SIAM J. COMPUT. © 1985 Society for Industrial and Applied Mathematics
Vol. 14, No. 4, November 1985 006

ON APPROXIMATION ALGORITHMS FOR #P*
LARRY STOCKMEYER*

Abstract. The theme of this paper is to investigate to what extent approximation, possibly together with
randomization, can reduce the complexity of problems in Valiant's class #P. In general, any function in
#P can be approximated to within any constant factor by a function in the class AZ of the polynomial-time
hierarchy. Relative to a particular oracle, A{ cannot be replaced by AZ in this result. Another part of the
paper introduces a model of random sampling where the size of a set X is estimated by checking, for various
“sample sets” S, whether or not S intersects X. For various classes of sample sets, upper and lower bounds
on the number of samples required to estimate the size of X are discussed. This type of sampling is motivated
by particular problems in # P such as computing the size of a backtrack search tree. In the case of backtrack"
search trees, a sample amounts to checking whether a certain path exists in the tree. One of the lower bounds
suggests that such tests alone are not sufficient to give a polynomial-time approximation algorithm for this
problem, even if the algorithm can randomize.

Key words. # P, approximation algorithms, probabilistic algorithms, computational complexity, relativiz-
ation

1. Introduction. There are several computational problems which can be formu-
lated as problems of counting the number of objects having a certain property. Valiant
[17] has introduced the class #P which includes a variety of counting problems such
as counting the number of perfect matchings in a graph, computing the permanent of
a matrix [17], finding the size of a backtrack search tree [8], and computing the
probability that a network remains connected when links can fail with a certain
probability [18]. For many problems in # P, including those just mentioned, no poly-
nomial-time algorithms are known. Indeed, it is not known whether these problems
can be solved at any fixed level of the polynomial-time hierarchy [1], [15]. The obvious
algorithm of explicitly counting the number of objects is not efficient since the number
of objects grows exponentially in the size of the input. For example, in computing the
permanent of an n X n matrix with 0-1 entries a;, the objects are the n! permutations
on {1,---,n}, and the permanent is equal to the number of permutations 7 with
[17=1 @iny=1. The best known general upper bound is that any #P problem can be
solved within polynomial space.

Two known approaches for reducing the computational complexity of problems
are approximation and randomization. Several NP-complete optimization problems,
which are apparently intractable to solve exactly, can be solved in polynomial time if
one is willing to settle for a solution within a constant factor of the optimum [3,
Chapter 6]. Randomization, that is, allowing algorithms to make decisions based on
the outcomes of random coin tosses but requiring that the probability of error be small,
has been useful in solving certain number theoretic problems faster than the best known
deterministic algorithms [12], [14]. The purpose of this paper is to investigate to what
extent approximation, or approximation together with randomization, can reduce the
complexity of counting problems.

Before proceeding to outline the remainder of the paper, we should explain
informally our definitions of “approximation” and “randomization.” If f(x) is an

* Received by the editors October 25, 1983, and in revised form July 5, 1984. Portions of this paper
have been reprinted, with permission, from The complexity of approximate counting by L. Stockmeyer,
appearing in the Proceedings of the 15th Annual ACM Symposium on Theory of Computing, 1983,
pp. 118-126, © 1983, Association for Computing Machinery, Inc.

T Computer Science Department, IBM Research Laboratory K51-281, 5600 Cottle Road, San Jose,
California 95193.

849

850 LARRY STOCKMEYER

integer valued function and r is a constant with r> 1, then a probabilistic algorithm
approximates f(x) to within the factor r if

(1) The value produced by the algorithm is between f(x)/r and r- f(x) with
probability =3+ ¢ for some fixed £ > 0.

(In the case of #P problems, each input x determines a set X, such that membership
in X, can be checked in polynomial time, and f(x) = |X,|.)

Regarding previous work, Knuth [8] gives a polynomial-time probabilistic
algorithm for estimating the size of a backtrack search tree where the expected value
of the output of the algorithm is exactly the size of the tree. Lovasz does the same for
computing the permanent of a 0-1 matrix. However, for both of these algorithms the
variance is very large and the algorithms do not satisfy (1). By analyzing the variance
of Lovasz’s algorithm and related algorithms, Karmarkar, Karp, Lipton and Luby [10]
give probabilistic algorithms for the 0-1 permanent which satisfy (1) and whose running
times, although not polynomial in n, are better than the best known deterministic
algorithm for computing the permanent exactly.

One well-known approach for estimating the size of a set X is random sampling.
Assuming that X is a subset of a finite universe U of known size, one would randomly
choose elements of U, compute the fraction y of chosen elements which belong to X,
and give ¥|U| as an estimate for the size of X. Goldschlager [5] suggests this as an
approximation method for computing the permanent. Since | U] is typically exponential
in n, this “singleton sampling™ runs in time polynomial in n and satisfies (1) only if
|X|zZ|U|/n* for some constant k. For example, if |X| is small, say |X|=|U|"? then
singleton sampling would require more than |U|"/? samples to reach a good estimate.

In §2 we define and study a class of restricted, but very natural, probabilistic
sampling methods motivated by the particular counting problems mentioned above.
Instead of ‘“‘singleton sampling” the algorithm is allowed to sample a large set S U
in one step; the information returned from the sample is whether S N X = . Depending
on the application, there might be restrictions on the types of subsets § which can be
sampled (some such restrictions are detailed in § 2), so we are interested in how the
complexity, measured as the number of samples, depends on the types of samples
which are allowed. Two motivating examples are given in § 2. The main technical
results of § 2 establish, for two particular classes of sample sets, lower bounds on the
number of samples required to approximate |X|. One of these lower bounds suggests
that this type of sampling will not give a polynomial-time algorithm for approximating
the size of a backtrack search tree. A

In § 3 we attempt to classify the complexity of approximately computing functions
in #P. The classification is done in terms of the polynomial-time hierarchy (for short,
P-hierarchy) [15]. For any function in #P, it is shown that a machine at the Af level
of the P-hierarchy can compute approximate solutions that are accurate to within the
factor (1+&n~?) for any fixed constants d and & > 0. (As noted above, computing # P
functions exactly is not known to be possible at any finite level of the P-hierarchy.)
The proof is based on the technique, introduced recently by Sipser [13], of estimating
the size of a set by hashing the set into a second set of known size. In the relativized
world, cf. [2], we also can give a corresponding lower bound to the general problem
of approximately computing # P functions: there is an oracle A and a function in #P*
(#P relativized to A) such that the function cannot be approximately computed to
within any constant factor by a machine at the A3* level of the A-relativized P-hierarchy.
The A% upper bound relativizes to an arbitrary oracle. (See [2], [15] for definitions of
oracle machines and the relativized polynomial-time hierarchy.)

ON APPROXIMATION ALGORITHMS FOR #P 851

In § 4 we give a relativization result that complements a recent result of Sipser
and Gdcs [13] that BPP is contained in the second level of the P-hierarchy. Recall that
BPP is the class, as defined by Gill [4], of languages accepted by probabilistic poly-
nomial-time Turing machines with error probability =;— ¢ for some fixed £ > 0. Sipser
and Gacs show that

BPPc 2;NIIS

and this result relativizes to an arbitrary oracle. Given this inclusion, it is natural to
ask whether BPP can be placed even lower in the P-hierarchy. The next lowest class
below =7 NIIJ is AZ, the class of languages accepted by deterministic polynomial-time
Turing machines using oracles in NP. We show that there is an oracle A such that

BPP* ¢ ADA,

Thus, any attempt to prove BPP < A% cannot proceed by a proof that relativizes to an
arbitrary oracle. The connection between this result and the rest of the paper is that
there is an oracle such that a BPP machine can approximately count the number of
strings of a given length that are in the oracle whereas Af machines cannot.

2. Intersection-samples.

. 2.1. Definitions and motivation. If U is a set, 2V denotes the set of subsets of U,
and |U| denotes the cardinality of U. For integer n =0, {0, 1}" denotes the set of binary
words of length n and {0, 1}*" denotes the set of binary words of length n or less. If
x is a word, |x| denotes the length of x.

-It will be convenient first to define a framework which captures several counting
problems. In this framework, a. problem is specified by a finite set (universe) U and
a collection of inputs Z < 2". Given an arbitrary input X € &, we want to approximate
|X| to within a constant factor. Let N =|U|. For the situations which motivate this
question, N is so large that the count cannot be done explicitly. For example, N =2"
where n is the natural measure of the “size” of the problem. We are also given a class
of sets, the samples,

_ €c2”.
For an arﬁit-rary S € €, a unit cost operation is computing the predicate

1 ifSNX#g,

T(X, S)=
INT (X, 5) {0 otherwise.

For what types of sample classes € can a probabilistic algorithm with running time
polynomial in n (=log N) compute an estimate to |X| accurate to within a constant
factor? Before giving some answers, we should first give some motivation. In particular,
we must justify why INT (X, S) can be viewed as a unit cost operation even when S
is a large set. (Since 'we are only interested in distinguishing polynomial from nonpoly-
nomial running times, any operation which can be done within time polynomial in n
is viewed as a “‘unit cost” operation.)

1. Estimating the size of a backtrack search tree. Knuth [8] has considered the
problem of estimating the size of a tree X where X is described implicitly by a
polynomial-time backtrack search procedure. That is, given the name u of a node of
X, the search procedure tells us which sons of u, if any, are in X. Let n be a known
upper bound on the height of X, and to simplify the notation assume that X is binary.
Imagine that X is embedded in F, the full binary tree of height n. The nodes of F are
labeled by strings in {0, 1}=": the root is labeled A, and the sons of u are labeled u0

852 LARRY STOCKMEYER

and ul. Thus, the universe is Uye.={0, 1}=". In this example, since the input X € U
is a tree with the same root as F, X must satisfy the following tree property:

if ue X then we X for all prefixes w of w.
Let &, be the class of sets X satisfying the tree property. The tree size problem is
g)tree = (Utree, %tree)-

(We have actually defined a family of problems for n = 1. For simplicity in this example
and the next, the index n has been suppressed.)

For w an arbitrary node of F, we can determine in time polynomial in n whether
the full subtree of F rooted at w contains a node of X simply by attempting to follow
the search procedure from the root of F to w. Thus the relevant class of samples is
the class of subtree samples:

%subtree = {Swlw € {0’ l}sn}

where

S, ={ue{0,1}*"|w is a prefix of u}

is the full subtree of F rooted at w. If we view the backtrack search procedure as a
“black box,” i.e., if the only way we can access the procedure is by giving it inputs
and looking at its outputs, then subtree samples are, intuitively, the most general way
of accessing the tree X.

2. Counting perfect matchings. For some #P-complete problems such as counting
the number of perfect matchings in a graph (equivalently, for bipartite graphs, comput-
ing the permanent of a 0-1 matrix), the corresponding existential question, does there
exist a perfect matching, can be solved in polynomial time [9]. Can this fact be used
to estimate the number of perfect matchings in polynomial time? We do not have a
definitive answer to this question, but we have some preliminary evidence on the
pessimistic side. The problem fits the general framework as follows. Suppose we want
to solve this problem for graphs with n vertices. Let m=n(n-1)/2 and let E =
{e,, "+, en} be the edges of K,, the complete graph on n vertices. In this case the
universe is Uyqoa = {0, 1}™ A particular graph G (viewed as a subgraph of K,) defines
a subset Xg of Uyera as follows:

if u=wu,uy++ u,€{0,1}™, then
ue X iff {¢|u; =1} is a perfect matching in G.

The ability to check the existence of perfect matchings in subgraphs of G allows us
to compute a variety of intersection samples as follows. Given E;,, E,,<S E with
E;,N E,, = J, in polynomial time we can compute the predicate P(G, E;,, E,,) defined
to be true iff G has a perfect matching M c E with E,, <M and E,, A M=0.
Specifically, if E;, contains an edge not in G or if E;, contains two edges with a
common endpoint then P(G, E;,, E,,,) is false. Otherwise, remove from G all edges
in E,, and E,, and all edges incident on an endpoint of an edge in E;,. Then
P(G, E;, E,,,) iff the resulting subgraph has a perfect matching. Note that
P(G, E,,, E,..) is really an intersection sample in disguise. Specifically, if we define
w=w, - - - w, bysetting w; = 1forall ¢; € E,,, w, = 0forall ¢; € E,,, and w; = x otherwise,
then

P(G, Eim Eout) =INT (XG: Qw)

ON APPROXIMATION ALGORITHMS FOR #P 853

where
4 —{ue{O 1}™|u matches w}.

Here, * is a ““‘don’t care” symbol that matches 0 and 1. Thus the relevant class of
samples, the partial match samples, is

%m ={Qulwe{0,1,*}"}.
Let Zuy={X|X € Uyora}. The word counting problem is

gword (Uworda all)

An obv1ous weakness in this definition is the choice of the class Z of inputs as all
subsets of U4 rather than all X of the form X for some graph G. The reason for
this choice is discussed below. :

Another #P-complete problem with a polynomial-time existential question is:
given a graph G and vertices s and #, count the number of subgraphs H of G for
which there is a path from s to ¢ in H [18] (this problem arises in network reliability).
An this case, a partial match sample asks whether there is a path from s to ¢ in a certain
subgraph of G. ‘ -

Our formal model of computatmn in this section is a variation of the probabilistic
decision tree studied previously by Manber and Tompa [11]. Fix some counting problem
P consisting of a universe U and-a class of inputs Z, and fix a class of samples €.
Each internal node of the decision tree is either a sample node or a randomizing node.
A sample node is labeled by a set S € € and has two branches that are taken depending
on the outcome of INT (X, S) where X is the particular input. A randomizing node
has any number'd of branches; each branch is taken with probability 1/d. Each leaf
is labeled by an integer between 0 and N, where N =|U|. A decision tree solves P to
within the factor r with error probability § if, for any input X € &, the tree reaches a
leaf with label between |X|/r and r|X| with probability =1— 8. The sample height of
the tree is the maximum number of sample nodes along any path from the root to a
leaf. As Manber and Tompa point out, a lower bound on sample height implies, to
within a constant factor, a lower bound on the expected number of samples (expectation
with respect to the choices made at randomizing nodes), since branches which are
much longer than the expected value can be pruned while increasing the error probabil-
ity only slightly.

DEeFINITION. H(N, @, €, r, 8) is the minimum sample height of a probabilistic
decision tree, using.only samples from 4, which solves % to within the factor r with
.error probability 8, where N is the size of the universe of 2.

Throughout the rest of § 2, r and & are fixed constants with r>1 and 0<8<3.

2.2. Statements of results and discussion. In the case of subtree samples, the
following lower and upper bounds are proved:

H(N’ @u‘ees (gsubtrem I, 6) =Q(Nl/2)’
H(N, Pyree Gubtrees 1; 8) = O((N log N)'?).

(Here and subsequently, the constants implicit in the O- and Q-notations depend on
r and 8.) Knuth [8] has reported success in practice with a simple O(log N) time
probabilistic procedure for estimating the size of a backtrack search tree. The Q(N'/?)
lower bound is not meant to contradict this, but it does suggest that the success must
be linked to the properties of trees generated by particular backtrack search procedures.
It should also be noted that the lower bound Q(N'/?) is proved when the input X is

854 LARRY STOCKMEYER

further restricted to a subset &' of %,... For 1=d =n, let X(d, 0) be the tree whose
nodes are {0, 1}=% For 1= k=27 let X(d, k) be the tree X (d, 0) together with the full
subtree of height n —d attached to the kth leaf of X (d, 0). Then &' is the set of trees
X(d, k) for 1=d=n and 0=k =2% It is relevant that the input can be restricted to
Z' because the trees in &’ can actually be generated by backtrack search procedures
of size O(n), whereas just naming trees in Z,.. requires names of length 2",

In the case of partial match samples we show that

H(N, Pyoras Gom, 1, 8) = Q(N').

Since N is exponential in the size of the graph, the Q(N'®) lower bound suggests
that this type of sampling does not give an efficient way of estimating the number of
perfect matchings. However, there are two loopholes in this interpretation. First, as
noted above, we do not restrict the input X to specify the set of perfect matchings of
some graph. Unfortunately, with this restriction an interesting lower bound cannot be
proved for the (nonuniform) decision tree model. To see this, let w; € {0, 1, *} have
1 in the ith position and *’s elsewhere. If INT (Xg, Q.,) =1 then ¢; is an edge of the
graph G. If INT (Xg, Q.,) =0 then we can assume that ¢, is not an edge of the graph
since it is not used in any perfect matching. Thus, by making m samples, the decision
tree can determine the graph. Since the graph determines the number of its perfect
matchings, a nonuniform decision tree, using the samples w;, can find the number of
perfect matchings within time polynomial in the size of the graph. The second loophole
is that it is conceivable that a different class of samples could lead to an efficient
estimation procedure. There is room for more work on this problem.

Remark. 1t is natural to ask whether the structure of the subtree and partial match
samples is being used to prove these lower bounds. Do lower bounds of the form N*
hold for arbitrary classes of samples? It is not difficult to see that a much smaller
sample height suffices if any subset can be a sample. Letting

Pa=(U,Z,1) and Zy= b =2U,

it can be shown that

H(N; gllb (6.“’ I, 8) = 0(108108 N lOglOglOg N),
H(N, P, €an, 1, 8) =Q(loglog N).

The simple proofs are sketched in [16]. Of course, this upper bound is useless in cases
where N is exponentially large since time N is needed just to name a member of €..
It is also noted in [16] that without approximation (i.e. r = 1) or without randomization
(i.e. 8 =0), the obvious upper bound of N samples cannot be significantly improved,
even when any subset of U can be a sample:

H(N, Py, €, 1, 8)=Q(N),
H(N; 9!“9 (gllh r, 0) =0(N)-

2.3. Proofs. Forthelower bound proofs it is useful to assume that any probabilistic
decision tree has the property that there is a constant p such that for any input X and
any leaf [, the probability that the leaf [is reached is either p or 0. Any decision tree
T not having this property can be modified to have the property without changing its
sample height. First, by adding new randomizing nodes with outdegree 1, modify T
so that the same number, say c, of randomizing nodes appear on every root-to-leaf
path. Second, modify T so that all randomizing nodes have the same outdegree d

ON APPROXIMATION ALGORITHMS FOR #P 855

(where d can be taken as the least common multiple of the outdegrees of all randomizing
nodes in the original T). Theén p=d ™ Details are left to the reader.

“The proofs of the lower bounds for subtree and partial match samples are similar.
In both cases we assume that the problem can be solved by a probabilistic decision
tree' T with sample height smaller than the desired lower bound. We find inputs D
and DU V, with r|D|<|DU V|/r, such that a substantial fraction of the leaves with
label between |D|/r and r|D| which are reached by T on input D are also reached by
T oninput D U V. From this we infer a contradiction, since an answer =r|D| is incorrect
for input DU V. There are two main steps.

I. Find a set D< U with |D|= N"? such that if S€ € and S is “large” (roughly
|S|= N'/?) then DN S # &. (Informally, if we restrict attention to inputs X with Dc X,
then all “large” samples supply no information about X — D since the answer to any
such sample is always that X NS #J.)

- II. Find a collection of sets V,, -, Vg U such that
(A) |Vj|= (r*+1)|D| for all j, and
(B) if S), Sy, - -+, S, €%, each S, is “small” (ie., SN D= for 1=k=g) and
g =h where h is the lower bound on sample height to be proved, then the
union of S, for 1= k=g intersects at most the fraction (1—8) of the V’s.

Given I and II, the lower bound h on sample height is proved as follows. Let T be a
decision tree with sample height h that approximates |X| to within the factor r with
error probability 8. If 7 is a root-to-leaf path and J < U, say that = is valid for J if
the answers given at sample nodes along 7 are consistent with the input being J. Let
Ti," * *, Ts- be the root-to-leaf paths in T that are valid for D and such that the leaf
label is between |D|/r and r|D|. By letting the input be D, we must have sp=1-35,
where p is the probability defined in the first paragraph of § 2.3. Consider the s x¢
0-1 array C ={cy} defined. as follows. For1=i=s and 1=j=¢if §,,S,, - -, S, are
the sample nodes on path 7; that do not intersect D and if the union of the S, for
1=k =g intersects V; then ¢; =1; otherwise, ¢, =0. By II(B), the density of 1’s along
any row of C is at most (3— 8). Therefore, there must be a column z such that the
density of 1’s in column z is at most (53— 8), so the density of 0’s is at least 3+ §). But
¢;; =0 means that the path 7; is valid for DU V,. This is true because, by (I), any large
sample on the path 7; gives the same answer, “ # J,” for any input containing D, and
by definition of c;, no small sample on 7; intersects V.. By II(A), the answer at the
leaf of any path 7, is =r|D|<|DU V,|/r. Therefore, when given the input DU V,, the

tree gives a too small answer with probability at least

G+8)sp=(3+8)(1-8)=1i>s.

THEOREM 2.1. H(N, @\ e, Coubiree, 7, 8) = Q(N2).
Proof. Recall from § 2.1 that F is the full binary tree of height n. The depth of a
node of F is its distance to the root. N= 2"*'—1 is the number of nodes of F, Let

d=[(n-1-log (r*+1))/2],

and let D be the set of (labels of) nodes of F with depth =d. Let u,,- - -, u, be the
nodes of depth d. For 1=j=1, let V; be the set of (labels of) nodes in the full subtree
of F rooted at u;. A simple calculation shows that II(A) holds by choice of 4, and that
t=Q(N"?). From the tree structure it can be seen that if S € %, e and S is “small,”
ie., if SN D=, then there is exactly one j such that SN V; # J. (Specifically, if w
is the root of the subtree S, then SN D = implies that the depth of w is greater than
d, so exactly one of uy, - - -, u, is an ancestor of w.) Thus, a union of h subtree samples
can intersect at most the fraction h/t of the V;’s. Taking h = (5— §)t gives the result. 0

856 LARRY STOCKMEYER

THEOREM 2.2. H(N, Pyoras €oms T, 8) =QUN'?). . -

Proof. Recall that N =2™. Say for simplicity that m is even. Using only the fact
that €., contains 3™ subsets, a simple probabilistic argument shows that there is a set
D with | D|= O(mN"?) such that if Q€ 6, and |Q|Z N"/* then QN D # . Specifi-
cally, for each u e U, put u in D with probability g=amN ~1/2 where a is a constant
to be chosen later. By Chebyshev’s inequality,

Pr {|D|Z 2amN"2} = O(N""?),
If Qc U and |Q|= N3,
Pr{PNQ=2}=(1-¢q)%¥=e".

Choose the constant a so that 3™ e ®" =31. Then for all sufficiently large N, with
nonzero probability |D|= O(mN"/?) and D intersects all Q€ %;, having |Q|= N2

If we{0,1,*}™ is the name of a partial match sample Q,, let *w be the number
of *’s in w. Note that |Q,|=2*". Choose integer d such that

2™/ =z (r2+1)|D|.
Note that d = O(log m). Let '
{Vi, -+, Vi}={Qulwe{0,1,%}™ and *w=m/2+d}.

II(A) holds by choice of d. If Q, is “small,” i.e., if *u = m/2, we must find an upper
bound for f(u) defined to be the fraction of the V)’s that Q, intersects. Note that
Q.NQ, # iff u matches w. Since f(u) is an upper bound, we can assume that
»u =m/2, and by symmetry assume that u = u,u, where u, is a string of m/20’s and
1's and u, is a string of m/2 »’s. Consider the w’s with »w=m/2+d that have k '
in the first m/2 positions and therefore m/2+ d — k *'s in the last m/2 positions. Letting
N(u, k) be the number of such w's that match u,

¥ 0= (") (v a-0)2

- m\ mz-d
‘ (m/2+d)2 o

s =% Nw w) / :

Since d = O(log m), there is a constant c such that

(wrava) 227m

so t=2°™/2"4 /m°, Therefore,
N N) "
k=d k k=d k—-d _
Therefore, a union of N*/*(=2"/%) partial match samples intersects at most the fraction
| 275 f(u) S2™*3™ 2" me = o(1)

of the V;’s, and the lower bound follows as outlined above. [

| . |

ON APPROXIMATION ALGORITHMS FOR #P 857

THEOREM 2.3. H(N, Pyrec, Cuutirees 1, 8) = O((N log N)'?).

Proof. Number the nodes of F in inorder (to number a tree, number the left
subtree, then the root, then the right subtree). For u € {0, 1}=" let d(u) be the inorder
label of the node u. If X is a subtree of F, define

d(X)={d(u)|lue X}.
For1=a=b= N, let
[a, b]={k|la=k=b},

and define INT (X, [a, b]) to be 1iff d(X)N[a, b]# . Because the integer labeling is
inorder, for each interval [a, b] and any two nodes u and v with d(u), d(v)€[aq, b],
if w is the least common ancestor of u and v, then d(w)€[a, b]. Therefore, for each
[a, b] there is a unique w (=w(a, b)) such that d(w)e[q, b] and, for all nodes
u, d(u) €[a, b] implies that w is an ancestor of u. Since X satisfies the tree property

INT (X, [a, b]) =INT (X, Sw(a, b))'

Therefore, it suffices to estimate | X| using “interval samples” of the form [a, b]. For
some parameter M, the algorithm has two cases, | X|= M and |X|= M. The first case
has M phases and does not use randomization. In the first phase, by asking questions
of the form INT (X, [1, k]) and doing binary search on k, find the smallest k, say k;,
such that ke d(X); this takes O(log N) samples. During the second phase, by asking
questions of the form INT (X, [k, +1, k]) and again doing binary search on k, find the
second smallest k with k e d(X), and so on. The first case uses O(M log N) samples.
If | X|< M, then |X| will be found exactly at phase number |X|+1. If each phase in
the first case finds a new element of d(X), then we know that |X|= M, and the second
case is invoked. In this case, since |X|Z M, Chebyshev's inequality implies that there
is a constant a (depending only on r and 8) such that the algorithm approximates | X|
to within the factor r with error probability & by making aN/M independent ‘‘single-
ton” samples of the form [k, k], calculating the fraction y of samples with
INT (X, [k, k]) = 1, and answering | yN]. The total number of samples for both cases
is O(M log N+ aN/M) so choosing M = (N/log N)'/? gives the result. O

3. A general upper bound. An NP-machine is a nondeterministic polynomial-time
Turing machine [3], [6]. Assume that NP-machines have at most two nondeterministic
choices at each step so that accepting computations on inputs of length n can be
represented as binary strings of length p(n) where p(n) is the machine’s polynomial
time bound. If M is an NP-machine and x € {0, 1}* is an input, let Accp(x) < {0, 1}7¢*D
be the set of accepting computations of M on input x. Define the function Cy,:{0, 1}* >
N by

CM(X) = |ACCM(X)l.
Valiant’s [17] class #P is
#P={Cy|M is an NP-machine}.

For Ac {0, 1}*, #P* is defined similarly except that M is a nondeterministic poly-
nomial-time oracle machine [2],[15] that can construct binary strings and make
decisions based on whether or not they belong to A. We also need a few classes of
the relativized P-hierarchy. Let P*(NP*) be the class of languages accepted by deter-
ministic (nondeterministic) polynomial-time oracle machines with oracle A. If Lis a
class of languages, let P(£)(NP(Z)) be the union of PA(NP*) over all Ac %. Let co-%

858 LARRY STOCKMEYER

be the class of complements of languég_es in %. Define
324 = NP(NP*), 12 = co-224,
AZA=P(NP*), AF*=P(Z}%).

When A is not present, the empty oracle is assumed. We extend the classes A%* and
A% to include functions from {0, 1}* to N; since the “toplevel” machine is deterministic,
the definition of this extension should be clear.

DerintTioN. If f, g:{0, 1}* >N and r: N>R, we say that g r-approximates f if, for
all n and all x of length n, v : :

T8 <g=rm -).

THEOREM 3.1. Let fe #P and let &,d>0. There is a g€ A} such that g (1+
en~%)-approximates f. Moreover, this relativizes to an arbitrary oracle A.

Proof. Let f = Cy, for some NP-machine M and let p(n) be M’s polynomial time
bound. Fix an input length n, and let ¢ = p(n). Consider the following predicate.

Hash(x, m):
There exist m x t 0-1 matrices H,, - - -, H, such that

2) for each ze Accy(x), there exists an i such that Hz# Hz' for all z'e
Accp(x)—{z}. :

Here, H;z means multiplication of the m >€t matrix H; by the t-vector z, yielding some
m-vector in {0, 1}™, where arithmetic is done modulo 2. The key fact, proved by Sipser
[13], is that there is a fixed constant ¢ such that

3) |Accpr(x)| =2™ =>Hash(x, m).

(Actually, this holds for any subset of {0, 1}*, not just those of the form Accy(x).) On
the other hand, if Hash(x, m) is true then, by (2), for each ze Accpy(x) there is a
unique pair (i, Hz) where 1=i=m and Hze€{0, 1}", so ‘

@ Hash(x, m)=>|Acey (x)| 5 m2".

Gics has observed that the predicate Hash(x, m) belongs to =7 (see [131). To see
this, first note that the existential quantifier, “there exists an i” in (2) has range
m = O(p(n)), so it can be replaced by a deterministic search. Once this is done, the
definition of Hash(x, m) has an obvious 3V form. Therefore, a deterministic poly-
nomial-time machine, making calls on an oracle for Hash, can find the minimum -m
such that Hash(x, m) is true. If m is this minimum then, by (3) and (4),

2m = |Accy (x)| = m2™,

so we have computed Cy(x) to within the factor m2°*!, To achieve the smaller factor
1+ en~% by running M k times in series it is easy to modify M to an NP-machine R
with

Cr(x) = (Cp(x))* for all x.
Applying the above hashing procedure to R, we can compute Cr(x) to within the
factor m2°*', so we can compute Cy(x) to within the factor (m2°*")"/¥, where now

m= O(k- p(n)). By choosing k to be a sufficiently large polynomial (k=0(n*"")
works), this latter factor is less than 1+ en~% The relativized case is identical. 0

ON APPROXIMATION ALGORITHMS FOR #P 859

The next result shows that any attempt to replace A5 by A5 in Theorem 3.1 cannot
proceed by a proof that relativizes to an arbitrary oracle.

THEOREM 3.2. There are a recursive oracle A and a function f € % P* such that, for
any constant r, if g r-approximates f then g £ Ap*.

Proof. Let h(n)=n'"%", For Ac {0, 1}*, let

Ca(n)=|AN{0,1}"].
The oracle A will be constructed such that, for all n,
(5) either Ca(n) = h(n) or Co(n)=2" - h(n).
Let f(x) = Ca(|x|). Clearly fe #P*. Let
L={xICa(lx) = h(lx]).

If ge A%* and g r-approximates f for some constant r, then by using property (5) of
A it is easy to see that Le A2*. We construct A so that L& A4,

Let M,, M,,- - - be an enumeration of all pairs (D, Ny) for. j, k=1, where D,,
D,, « - - is an enumeration of the deterministic polynomial-time oracle Turing machines
and N, N, -+ is an enumeration of the nondeterministic polynomial-time oracle
Turing machines. Let p, (resp., g) be the polynomial running time of D; (resp., Ni).
If Le A% then there is some M, = (D, N;) such that D, accepts L when D calls N,
as an oracle and N, calls A as an oracle.

The construction of A proceeds by stages. During the construction we have two
disjoint finite sets of strings B and B that grow dynamically. At any point, B (resp.,
B) is the set of strings that have been committed to be in A (resp., not in A). Strings
are never removed from B or B, Initially, B=B=0. During the ith stage we extend
the definitions of B and B so that M, does not accept L. Let n, be so large that

h(n,) <2™—h(n,).

Place all strings of length = n, in B. The construction has the property that just before
the start of stage J, a string is committed (in either B or B) iff its length is = n,
Stage i. Let M, =(D,, N;). Choose n> n, so large that

2(n) - qu(py(n)) < h(n).

Set n4y = qi(py(n)). If n; <)z| S n,,, and |z| % n, place z in B, Let x = 0". Start simulating
D, on input x until D, makes its first oracle call, asking whether the string y is accepted
by N, with oracle A. Since [y|S p(n), any oracle query “ze A?” made by N, has
|2| S 7. Thus, at this point, the answer to any such query with |z|# n is determined
by the commitments to B and B made so far. There are two possibilities.

1. For all ways of extending B and B by adding uncommitted strings of length
n, Ni does not accept y. In this case, the answer to D;’s query is that N does not
accept y. Continue simulating D, until its next oracle call.

2. If the first case does not hold, then N, has an accepting computation a on
input y. Let S be the set of uncommitted strings of length n that are queried along a.
Note that |a|S n,.,, so |S|Sn,.,. For each ze S, commit z to be in either B or B
depending on whether the answer to the query “z€ A?’ in a is “yes” or “no,”
respectively, After these commitments, N, will accept y no matter how B and B are
extended further, since a nondeterministic machine accepts if it has any accepting
computation, and further additions to B and B cannot invalidate the accepting
computation a. Continue simulating D; until its next oracle call.

r 1

860 LARRY STOCKMEYER

Each subsequent oracle call of D; is handled similarly by either case 1 or 2. At
the end of D;’s computation, at most p;(n) - n;.; < h(n) strings of length n have been
committed. If D; accepts (resp., rejects) x, place all uncommitted strings of length n
in B (resp., B). In either case, D; makes an error. [

4. BPP and the P-hierarchy. A probabilistic oracle Turing machine has both coin-
tossing states as in the definition of probabilistic Turing machines [4] and oracle query
states as in the definition of oracle Turing machines [2],[6]. Following Gill [4] define
BPP* to be the class of languages accepted by polynomial-time probabilistic oracle
Turing machines which, for all inputs, have error probability =1—¢ for some fixed
€ >0 when the oracle A is used.

Sipser and Gacs [13] show that, for any oracle A,

BPP* < =2 NII%A.
THEOREM 4.1. There is a recursive oracle A such that
BPP“ & A2,

Proof. Let h(n), A and L be as.in the proof of Theorem 3.2. Since L& AS? we
only have to observe that Le BPP*. Given an input of length n, the probabilistic oracle
Turing machine generates a random string z of length n and asks whether ze A. If
z € Athen the machine rejects, or if z ¢ A then the machine accepts. The error probability
is =n'°8"/2" which is less than } for all sufficiently large n. O

5. Conclusion. It has been shown that any function in #P can be approximated
by a function in Af. Concerning lower bounds, if the #P problem is based on an
NP-complete problem, for example, counting the number of satisfying truth assign-
ments of a given propositional formula, it is easy to see that computing r-approximate
solutions is NP-hard for any constant r. However, for approximately computing the
permanent of a 0-1 matrix, where the corresponding existential question is solvable
in polynomial time, the issue of lower bounds is open.

Question. Classify the computational complexities of approximately computing
the permanent of a 0-1 matrix and approximately counting the number of satisfying
assignments of a propositional formula. In particular, is the former problem NP-hard?
Is the latter problem #-hard for some class &£ of the P-hierarchy above NP?

Recently, Karp and Luby [7] have discovered polynomial-time probabilistic
approximation algorithms for certain problems in # P such as counting the number of
satisfying assignments of a propositional formula given in disjunctive normal form.

Acknowledgments. I am grateful to Richard Lipton for suggesting the question of
whether the size of a tree could be estimated using subtree samples and for many
helpful discussions. One of the referees provided an extensive list of comments which
helped improve the presentation of this material.

REFERENCES

[1) D. ANGLUIN, On counting problems and the polynomial time hierarchy, Theoret. Comput. Sci., 12 (1980),
pp. 161-173.

[2] T. BAKER, J. GILL AND R. SOLOVAY, Relativizations of the P=TNP question, this Journal, 4 (1975),
pp. 431-442.

{3] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability, A Guide to the Theory of NP-
Completeness, W. H. Freeman, San Francisco, 1979.

[4] J. GILL, Computational complexity of probabilistic Turing machines, this Journal, 6 (1977), pp. 675-695.

ON APPROXIMATION ALGORITHMS FOR #P . 861

(5] L. M. GOLDSCHLAGER, An approximation algorithm for computing the permanent, Lecture Notes in
Mathematics, 829, Springer-Verlag, Berlin, pp. 141-147.
[6] J. E. HOPCROFT AND J. D. ULLMAN, Introduction to Automata Theory, Languages, and Computation,
Addison-Wesley, Reading, MA, 1979.
[7] R. KARP AND M. LuBY, Monte-Carlo algorithms for enumeration and reliability problems, Proc. 24th
IEEE Symposium on Foundations of Computer Science, 1983, pp. 56-64.
[8] D. E. KNUTH, Estimating the efficiency of backtrack programs, Math. of Comput., 29 (1975), pp. 121-136.
[9] E. LAWLER, Combinatorial Optimization; Networks and Matroids, Holt, Rinehart and Winston, New
York, 1976.
[10} M. LuBy, personal communication.
[11] U. MANBER AND M. TOMPA, Probabilistic, nondeterministic, and alternating decision trees, Proc. 14th
ACM Symposium on Theory of Computing, 1982, pp. 234-244.
[12] M. O. RABIN, Probabilistic algorithms in finite fields, this Journal, 9 (1980), pp. 273-280.
[13] M. SIPSER, A complexity theoretic approach to randomness, Proc. 15th ACM Symposium on Theory of
Computing, 1983, pp. 330-335. ,
[14] R. SOLOVAY AND V. STRASSEN, A fast Monte-Carlo test for primality, this Journal, 6 (1977), pp. 84-85.
[15] L. J. STOCKMEYER, The polynomial-time hierarchy, Theoret. Comput. Sci., 3 (1977), pp. 1-22.
[16] , The complexity of approximate countipg, Proc. 15th ACM Symposium on Theory of Computing,
1983, pp. 118-126.
{17] L. G. VALIANT, The complexity of computing the permanent, Theoret. Comput. Sci., 8 (1979), pp. 189-201.
[18] ———, The complexity of enumeration and reliability problems, this Journal, 8 (1979), pp. 410-421.

| oSl |

