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CONSTANT DEPTH REDUCIBILITY*

ASHOK K. CHANDRAt, LARRY STOCKMEYER?$ AND UZI VISHKIN§

Abstract. The purpose of this paper is to study reducibilities that can be computed by
combinational logic networks of polynomial size and constant depth containing AND’s, OR’s and
NOT’s, with no bound placed on the fan-in of AND-gates and OR-gates. Two such reducibilities are
defined, and reductions and equivalences among several common problems such as parity, sorting,
integer multiplication, graph connectivity, bipartite matching and network flow are given. Certain
problems are shown to be complete, with respect to these reducibilities, in the complexity classes
deterministic logarithmic space, nondeterministic logarithmic space, and deterministic polynomial
time. New upper bounds on the size-depth (unbounded fan-in) circuit complexity of symmetric
Boolean functions are established.
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1. Introduction. Reducibility is a key concept in the theory of computation.
In recursion theory, effective reducibility is useful in proving problems decidable
or undecidable. In complexity theory, polynomial-time reducibility is central to
the concept of NP-completeness [5], [14], [9] and permits one to show that the
complexities of different problems are related even though the exact complexities
of the problems are unknown. Similarly, reducibility can be used to establish
upper or lower bounds on computational complexity: If problem A is reducible to
problem B, then a lower bound on the complexity of A4 translates to a similar
lower bound on the complexity of B, and an upper bound on B translates to an
upper bound on A4; this requires that the computational resources used in comput-
ing the reducibility function be negligible compared to the upper or lower bounds
being proved. For investigating certain problems such as the relationship be-
tween deterministic and nondeterministic logarithmic space, polynomial-time
reducibility is too weak so it has been strengthened to logspace reducibility [13],
[21].

The purpose of this paper is to study reducibilities that can be computed by
combinational logic circuits containing AND’s, OR’s and NOT’s with no bound
placed on the fan-in of AND-gates and OR-gates (call these simply circuits)
where the circuit has polynomial size and constant depth. We define two such
reducibilities and investigate how several common problems such as parity,
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sorting, integer multiplication, graph connectivity, bipartite matching and network
flow, are related by these reducibilities. There are two motivations for studying
constant-depth reducibility. Interest was drawn to size-depth complexity for
circuits by a recent result of Furst, Saxe and Sipser [8] showing that the parity
function cannot be computed by any polynomial-size constant-depth circuit.
Furst, Saxe and Sipser also give a few polynomial-size constant-depth reductions
from parity to other problems, thus showing that these other problems cannot be
computed by polynomial-size constant-depth circuits. By giving a more detailed
classification of a larger collection of problems, our results contribute toward the
theory of size-depth complexity for circuits. It should be expected that constant-
depth reducibility will refine and expose more structure in low-level complexity
classes such as deterministic polynomial time and nondeterministic logarithmic
space than do the commonly used polynomial-time and log-space reducibilities.

Another motivation is that circuits with unbounded fan-in can be viewed as
a model for unbounded fan-in parallelism, where circuit depth corresponds to
parallel time and circuit size corresponds to the number of processors in the
parallel machine. This view was strengthened by a recent result of Stockmeyer
and Vishkin [22] giving a correspondence between circuits and the concurrent-
read concurrent-write parallel random-access machines of Goldschlager [10] and
Shiloach and Vishkin [19], [23] (CRCW PRAM or, for short, WRAM) which
have many random access machines operating in parallel and communicating via a
shared common memory, with appropriate conventions for resolving writing
conflicts into the common memory. Stockmeyer and Vishkin show that time and
number of processors for WRAM'’s correspond respectively (and simultaneously)
to depth and size for circuits, where the time-depth correspondence is to within a
constant factor and the size-processors correspondence is to within a polynomial.
(Technically, for the simulation of circuits by WRAM'’s, the WRAM is allowed to
be nonuniform.) By this correspondence, our results can also be viewed as
contributing toward the theory of time-processors complexity for (nonuniform)
WRAM’s.

Section 2 of the paper contains definitions, including definitions of our
constant-depth reducibilities. In §3, we establish several reductions and equiva-
lences among problems using these reducibilities. We also show certain problems
to be complete, with respect to these reducibilities, in the complexity classes
deterministic logarithmic space, nondeterministic logarithmic space, and determin-
istic polynomial time. In §4 we give upper bounds on the size-depth circuit
complexity of symmetric functions and graph transitive closure that improve the
obvious upper bounds.

2. Definitions. A Boolean function is a function of the form
£:{0,13" - {0,1}™ where 0 and 1 denote Boolean values false and true, respec-
tively; n is the number of variables or inputs, and m is the number of outputs. A
problem is an infinite sequence of Boolean functions {f, | n> 1} such that f,
has n variables. For some of the specific problems discussed herein, we define f,
only for certain values of n; in this case we assume that any f, not defined
explicitly is identically zero.

A circuit is an acyclic directed graph. Each node of the graph is labeled as
either an input node, an AND-gate or an OR-gate. Input nodes must have fan-in
(i.e., in-degree) zero. In addition, certain nodes are designated as output nodes.
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An assignment of Boolean values to the input nodes extends, in the obvious way,
to Boolean values associated with all nodes; an AND-gate (resp., OR-gate) with
fan-in zero is assigned value 1 (resp., 0). The size of a circuit is the number of
edges (i.e., wires). The depth is the length of a longest path from some input to
some output. The circuit C computes the function f:{0,1¥" » {0,1}™ if C has 2n
input nodes and m output nodes and there is a 1-1 correspondence between input
nodes and xj,%q, ..., Xn, %, (X; denotes the negation of x;) and a 1-1 correspon-
dence between output nodes and yi, ..., y, such that, for all (xy,...,x,) € {0,1}",
the assignment x;,%q, ..., Xn, X, to the input nodes extends to the assignment
Y1, .., Ym to the output nodes where f(x1,...,xs) = (V1,...,ym). (When input
variables and their negations are available as inputs, it is well known that NOT-
gates can be eliminated from circuits without increasing depth and at most
doubling size, so we do not need NOT-gates in our formal definition of circuits.
However, for convenience we sometimes use negations in describing circuits.)

DeriniTION. Let S(n) and D(n) be functions from positive integers to positive
reals. The problem F = {f,} is in the complexity class SIZE-DEPTH(S(n), D(n))
if, for every n > 1, f, is computed by a circuit with both size < S(n) and depth <
D(n). Also define

SIZE-DEPTH (poly, constant) =dli OSIZE-DEPTH(cnk, d).
cdk2
Similarly, SIZE-DEPTH(poly, D(n)) is the union of SIZE-DEPTH(cr*, D(n))
over all constants ¢ and k, and SIZE-DEPTH(S(n), constant) is the union of
SIZE-DEPTH(S(n), d) over all constants d.

A fan-in 2 circuit is a circuit such that all AND-gates and OR-gates have
fan-in 2.

Our first reducibility is the projection reducibility studied by Skyum and
Valiant [20]. A problem F = {f,} is projection reducible to a problem G = {gn}
(F <proj G) if there is a function p(n) bounded above by a polynomial in n, and
for each f, € F a mapping

onZ{}’l,---,}’p(n)} -> {XI,El,...,xn,-.-x-n, 0, 1}

such that f,(x1, ..., Xn) = 8p(m)(6n(¥1)s .-, Gn(Wp(n))). We also use a weaker reduci-
bility, constant-depth truth-table reducibility: F <.q. G if there is a polynomial
p(n) and a constant ¢ such that each f, is computed by a circuit of depth < ¢ and
size < p(n) containing "black boxes" which compute members g; of G or their
negations g; with j < p(n), where the size and depth of black boxes are counted
as unity, and such that there is no path in the circuit from an output of one black
box to an input of another black box.

We write F=, G if both F <, G and G <« F.

The following proposition is obvious.

PROPOSITION 2.1. (1) Sproj and <cq-u are transitive relations.

(2) FSprojG > F<guG.

(3) If F<projG or F <cd-t G, and G e SIZE-DEPTH(S(n), D(n)) where S
and D are monotone nondecreasing, then

F € SIZE-DEPTH(p(n)-S(p(n)), c-D(p(n)))
for some polynomial p and constant c. In particular,
G ¢ SIZE-DEPTH(poly, constant) = F e SIZE-DEPTH(poly, constant).
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(We are interested primarily in the case D(n)= O((log n)*) for some con-
stant k, and c-D(p(n)) = O((log n)¥) in this case, justifying the name '"constant
depth reducibility".)

We use certain complexity classes defined by time or space bounded Turing
machines (see, for example, [9], [12]). Let & (resp., #Z£) be the class of
languages L € §0,1}* which are accepted by deterministic (resp., nondeterminis-
tic) Turing machines with a read-only input tape and a logn bounded worktape.
A language L € {0,1}" is in the class NONUNIF-& (NONUNIF-#%) if there is
a polynomial p(n) and a logn space-bounded deterministic (nondeterministic)
Turing machine M, such that for every n there is a binary word «, with
| a,| < p(n), such that for all x with |x| =n, M accepts x#a, iff x e L; ayis
called the advice (for inputs of length n). Let & be the class of languages
L € {0,1}* accepted by polynomial time-bounded deterministic Turing machines.
A problem F is a one-output problem if every f, e F has one output. The com-
plexity classes &, #Z, NONUNIF-Z, etc. can be viewed as classes of one-
output problems by making the obvious correspondence to binary languages,
namely, x € L iff f|,)(x)=1. If < is a reducibility, F is a one-output problem,
and € is a class of binary languages, then € < F if GS F for all Ge@; F is
<-complete in € if both € < Fand Fe €.

For several of the specific problems considered, inputs are natural numbers
or graphs. Natural numbers are sometimes represented in unary notation and
sometimes in binary. The m-bit unary representation of k (0 < k <m) is the

binary word 1k0™-k Graphs are represented by adjacency matrices. An undi-
rected graph with m vertices vy,...,v,, is represented by m(m-1)/2 Boolean

variables a;; for 1 < i,j < m and i < j such that a,j = 1 iff there is an edge between
v;and v;. A directed graph is represented by m? variables a;j for 1 < i,j < m such
that a;;=1 iff there is a directed edge from v; to v;. An undlrected bipartite
graph with 2m vertices uy, ..., Um, V1, ..., ¥y is Tepresented by m? variables a;; for
1 <i,j < m such that g;;= 1 iff there is an edge between u; and v;. In describing
graph constructions we let {u,v} denote the undirected edge between vertices u
and v and we let (u,v) denote the directed edge from u to v.
Define the function
1g(n) = llog,(n+1)1;

note that Ig(n) is the length of the binary representation of n.

3. Constant depth reducibility among problems. Our results are summarized in
Fig. 1; see the Appendix for precise definitions of the various problems.

THEOREM 3.1. All the problems enclosed as a group in Fig. 1 are in the same
=cq.u equivalence class. Groups with =0 written to the left are in the same =y
equivalence class. A problem in a group 9 is reducible to all problems in the group
above G via the indicated reducibility. Problems in the lowest group in Fig. 1 are in
the class SIZE-DEPTH(poly, constant).

(We note that Furst, Saxe and Sipser [8] previously showed that PARITY is
<cd-t to THRESHOLD, MULTIPLICATION, and UNDIR-ST-CONNEC-
TIVITY.) Problems that are =, are, in a fairly strong sense, the "same"
problem. Since Furst, Saxe and Sipser [8] show that PARITY is not in the class
SIZE-DEPTH(poly, constant), we know that this class lies strictly below the class
containing PARITY in the <.g. ordering. We do not know that any of the
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FIG. 1.

other relationships in Fig. 1 are strict in the < 4. ordering. Several of the
reductions in Fig. 1 are not surprising. However, we can single out

UNDIR-ST-CONNECTIVITY =,,j; CONNECTIVITY
MULTIPLICATION =.4..; SORTING

as being nonobvious.
Shortly we prove Theorem 3.1 by giving a series of reductions. We first

prove the following completeness results; these results immediately yield most of
the projection-equivalences for graph connectivity problems.

THEOREM 3.2.
(1) UNDIR-ST-CONNECTIVITY, CONNECTIVITY, and UNDIR-CYCLE

are <proj-complete in NONUNIF-£2.

(2) UNDIR-CYCLE is < proj-complete in 2.

(3) DIR-ST-CONNECTIVITY and STRONG-CONNECTIVITY are
< proj-complete in NONUNIF-AZL and in N L.

(4) CIRCUIT-VALUE is <proj-complete in 2.
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Proof. The reductions are very similar to the known log-space reductions
[11], [13], [15], [17].

(1) By a result of Aleliunas et al. [1], it easily follows that all three problems
mentioned in part (1) belong to NONUNIF-Z; for inputs of length n =
m(m-1)/2 corresponding to adjacency matrices for undirected graphs with m
vertices, the advice «, encodes a universal traversal sequence for such graphs.
For the other direction we first show that

NONUNIF-£Z <;;,; UNDIR-ST-CONNECTIVITY.

Let M be a deterministic 1g(n) space-bounded Turing machine. Fix an input
length n, let «, be the advice, and let n’ = |a,|. The configurations of M are
4-tuples (q,i,B,j) where g indicates the state of the finite control, i with
0 < i< n+n'+2 is the position of the input head in the string ¢x#a,$ (where ¢
and $ are left and right endmarkers), the word B with | B| = 1g(n) is the content
of the worktape, and j is the position of the head on the worktape. The machine
has a unique initial configuration ¢y = (qo, 0, #8(M 1) where qo is the unique
initial state and # is the blank tape symbol. Assume that M has a unique accept-
ing configuration ¢, = (g, 0,#%™ 1) where g, is the unique accepting state.
Modify M so that it never halts, and that if configuration c, is entered then M
cycles forever in ¢,. Let p be the number of configurations of M; p is bounded
above by a polynomial in n. The number p can also be taken as an upper bound
on the time for M to accept; i.e., if M accepts x of length n then M will be in
configuration ¢, at step p.

For each input x of length n we describe a graph G(x) such that the adjacen-
cy matrix of G(x) is obtained from x by a projection reduction. The vertices of
G(x) are all pairs (c,t) where c is a configuration of M and 0 < ¢ < p. Consider a
vertex (c,t) withc = (q,i,B,j) and 0 <t < p. If i=0 or i > n, then the configura-
tion ¢ reached in one move of M is determined and G(x) will have the edge
{(c,D),(c",t+1)}. If 1 <i<n, there will be two configurations ¢’ and ¢’ such
that ¢’ (¢”’) is the configuration reached in one move if x;=0 (x;=1). Thus, X;
is the entry in the adjacency matrix corresponding to the edge {(c,?), (c/,t+1)},
and x; is the entry corresponding to the edge {(c,?),(c”,t+1)}. If ¢’ =¢” then
the entry corresponding to edge {(c,?),(c’,z+1)} is 1. Let m = p(p+1) be the
number of vertices of G(x). Number the vertices so that vy = (cg,0) and
vm = (¢g p). Since M is deterministic, for each fixed x and each vertex v of the
form (s, p), the connected component of G(x) containing v is a tree which can be
rooted at v such that the sons of (-,?) in the tree are all of the form (., 7~1) for
all t. Therefore, M accepts x iff there is a path from vy = (cg, 0) to vy, = (cz, p).

For CONNECTIVITY, we form G'(x) from G(x) by adding the edges of a
spanning tree among the vertices

f@.p) | c#ca}tuilco0)}.

Recalling that M never halts, it is easy to see that G'(x) is connected iff there is
a path from (cg, 0) to (cg,p). For UNDIR-CYCLE, we add to G(x) the edge
between (cg, 0) and (¢4, p).

(2) Since Hong [11] shows that UNDIR-CYCLE ¢ £, the result is immedi-
ate from part (1).

(3) Obviously DIR-ST-CONNECTIVITY and STRONG-CONNECTIVITY
belong to #&Z. The proof that
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NONUNIF- 42 <proj DIR-ST-CONNECTIVITY

is very similar to the undirected case in (1). For example, if from configuration
c=(q,i,B,j) with x;=0 (x;=1) M can reach any configuration in the set Cy
(C1) in one move, and if B = Cgn Cq, then the entry of the adjacency matrix
corresponding to the directed edge ((c,?), (', t+1)) is % if ¢’ € Co-B, x; if
¢/ € Ci-B, 1if ¢’ € B, or 0 otherwise. So there is a directed path in G(x) from
vi1 = (cg, 0) to v, = (cg, p) iff M accepts x.

For STRONG-CONNECTIVITY, form G’(x) from G(x) by adding the
directed edges

{ (Vmou), (u,v1) | u s viand u # vy }.

Then G'(x) is strongly connected iff there is a directed path from v; to v, in
G(x).

(4) As Ladner [15] points out, it is well known that for any deterministic
Turing machine M there is a polynomial-size fan-in 2 circuit which takes as input

a (binary representation of a) configuration of M and outputs the next configura-

" tion after one step. If M is p(n) time-bounded, one places p(n) copies of this
circuit in series. By choosing the binary representation of tape symbols properly,
the bits of the binary representation of the initial configuration are either con-
stants or depend directly on the bits of the input x to M. Therefore, this is a
projection reduction. [J

The following useful lemma is proved by computing f from its disjunctive
normal form.

Lemma 3.3. If f is a Boolean function with n inputs and m ouiputs, then f is
computed by a circuit of size < (m+n)-2" and depth 2.

Proof of Theorem 3.1. We first show that the problems in the lowest group in
Fig. 1 are in SIZE-DEPTH(poly, constant).
ADDITION

The well known carry look-ahead method for the addition of m-bit numbers
can be implemented as a circuit of size O(m3) and constant depth (see, e.g., the
proof of Theorem 1 in [22]). This size bound is greatly improved in [4].
COMPARISON

Given two m-bit binary numbers y = y,,...y2y1 and z = z,,...272y, y < z iff there
is an i such that y; =0, z;= 1, and y; = z; for all j > i. This can be computed by a
circuit of size 0(m2) and depth O(1).
MAXIMUM

Given m m-bit binary numbers ay, ..., ap, let ¢;;=1 if a; > a;, or 0 otherwise.
Using COMPARISON, all the ¢;; can be computed in size O(m*) and depth O(1).

Letting d; be the AND of c;; over all j#i, a; is the maximum iff d;=1. The
maximum number can be computed as

V ai/\d,-

1<is<m

where the A is computed bitwise over the bits of a;.
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MERGING

Let ay,...,a,, and by,..., b, be the lists of m-bit binary numbers, each list
sorted in nondecreasing order. (Using COMPARISON, a polynomial-size
constant-depth circuit can check that the lists are indeed sorted and can set all
bits of the output to zero if not.) Let c;;=1 iff b; <a;. For each j, c1jca...cpj is
a unary representation of the number of b’s less than a;. Let c; be this unary
representation with j 1’s appended on the left and m—j 0’s appended on the right,
$0 ¢; is a 2m-bit unary representation of a;’s position in the merged list. Similar-
ly, let d;; =1 iff a; < b;. Appending j 1’s to the left of dyd>;...d,; and m—j 0’s to
the right gives b;’s position in the merged list as a unary number d;. For each k
with 1 € k < 2m, let EQ.(z) be a one-output circuit whose output is 1 iff z is a
unary representation of k; letting z = zy2z3...23,, and 29,41 =0, EQg(z) =
Zy AZg41. Finally, the k™™ number in the merged list is

V (EQi(c) Aa) V V (EQk(d)) A b)).

1<j<2m 1<j<2m

Remark. Shiloach and Vishkin [19] show that MAXIMUM and MERGING
can be computed by a WRAM in constant time with a polynomial number of
processors. Therefore, an alternate proof that MAXIMUM and MERGING are
in SIZE-DEPTH(poly, constant) follows from this result and the Stockmeyer-
Vishkin [22] simulation of WRAM’s by circuits mentioned in the Introduction.

UNARY-TO-BINARY

Let x=xj...x, be the given unary representation. (A polynomial-size
constant-depth circuit can check whether x;...x, € 1*0* and set the output to zero
if not.) Let xg=1, x,41 =0 and d; = x; AX; 1 for 0 < i< n, so d;=1ff x is the
unary representation of i. For 1 < j <lg(n), the j** bit of the binary representa-
tion is the OR of d; over all i such that the j*! bit of i is 1.

BINARY-TO-UNARY
Since the output depends only on the first lg(n) inputs, the polynomial-size
constant-depth circuit is immediate from Lemma 3.3.

The remainder of the proof of Theorem 3.1 is a series of reductions.

PARITY £y0j ZERO-MOD-2¢ 4

PARITY on n variables xi,...,x, is reduced to ZERO-MOD-2¢ on 2°~!n
variables y;; for 1<i<nmand 1<j< 2¢=1. The projection reduction is on(yij) =
x; for all j.
ZERO-MOD-2¢ £.4.;; PARITY

We show that ZERO-MOD-2¢ < 4.4 ZERO-MOD-2¢"1! for all ¢ > 2. This
suffices since c is constant and < 4.y is transitive. Let xj, ..., x, be the input bits
and let s = 2 x;. Compute y;; = x;Ax;for all i and j with i <j. Let¢ = 2 y;; and
note that f=s(s—1)/2. It is easy to verify that s=0 (mod2°) iff both s=0
(mod 2¢~1) and 7= 0 (mod 2¢~1).

PARITY <;10; MULTIPLICATION
This reduction is given in [8]. Given xi,...,x,, let k =1g(n) and form the
two binary numbers
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A= §x,~2"("—”, B = 5 2ki-D,
= .

i=1

I=

Writing AB = 2 ci2k(i‘1), where the c; are k-bit numbers, the parity of Z x; is the
low order bit of c,.

The next seven reductions form a cycle showing =.4.,; for the seven prob-
lems in the group containing MULTIPLICATION in Fig. 1. —

MAIJORITY < 4.t MULTIPLICATION

The first stage of this reduction is identical to PARITY <p.,; MULTIPLI-
CATION described above. The binary representation of = x; is ¢,. These k bits
are then compared with the k-bit binary representation of [n/21.

MULTIPLICATION <.4.« MULTIPLE-ADDITION
Multiplication of m-bit numbers y and z = = z;2' is reduced to addition of m
2m-bit numbers ay, ..., a,,_1. For each i, a; = z;2'y, so each bit of each g; is the
AND of a bit of y and a bit of z.
MULTIPLE-ADDITION <41 BINARY-COUNT
Let A4, ..., A,, be the m m-bit binary numbers to be added, and for 1 <i<m
let
m—1 ]
A,' =2 a,-j-21 where a;j € {0,1}.
j=0

Let L =m+1g(m) and let / =1g(m). Note that L bits are sufficient for the sum
S = 3 A;. We describe the reduction as a sequence of stages.

The first stage. For 0 < j < m, let b; be the /-bit result of applying BINARY-
COUNT with inputs ay;,a3j,...,amj. Note that § = b2/, Since each b; has
only / bits, the numbers b2/ can be "packed" into / L-bit numbers By, ..., By
whose sum is S; that is for each i with 1 < i </ let

Bi=3 bi_yqpe271*K
k20

The second stage. Let /(2) =lg(¢) (=1g(lg(m))). Similarly, by applying
BINARY-COUNT to each bit position in By, ..., By and then packing the /(2)-bit
results into /(2) L-bit numbers Cy, ..., Cy(2), we have reduced the original prob-
lem to the problem of adding /(2) L-bit numbers. Since each use of BINARY-
COUNT in the second stage has only 1g(m) inputs, each application of BINARY-
COUNT is implemented directly by a circuit of polynomial size and constant
depth (see Lemma 3.3) rather than by a "black box" as in the first stage.

The remaining stages. For i > 3, let /(i) =1g(¢/(i-1)). By the same method
of counting followed by packing, the i stage produces #(i) L-bit humbers whose
sum is S. Let i* be the smallest i such that /(i) = 2. The i* stage produces two
L-bit numbers, say Y and Z, which can be added directly by a circuit of polyno-
mial size and constant depth to obtain S. If implemented as described, this
would give a circuit of depth > i* (not constant). Actually, only the first two
stages are implemented as described. For i > 3, note that each bit of each L-bit
number produced at the it stage depends on at most #(i-1) bits of the nunibers
produced at the (i—1)™ stage. Therefore, each bit of ¥ and Z depends on at
most ¢t = /(2)/(3)...£(i*~1) bits of the numbers Cj,...,Cy2) produced at the
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second stage. Since ¢ = O(lgn), Lemma 3.3 says that Y and Z can be computed
from the C; by a circuit of polynomial size and constant depth.

BINARY-COUNT <41t SORTING

Let xq,...,x, be the input bits. Let @; be an n-bit number whose highest
order bit is x; (the lower order bits of the ag; can be chosen to make the a; distinct
if desired). The highest order bits of the q; in sorted order give an n-bit unary
representation of X x;, from which the binary representation of 2 x; can be
computed in polynomial size and constant depth.

SORTING <4« UNARY-COUNT

Let ay,...,a, be the numbers to be sorted. Let c;; =1 iff either a; <a; or
(a;j=aj and i < j). For each fixed j, applying UNARY COUNT with inputs c;;
for all i gives a unary representation of a;’s position in the sorted list. The sorted
list is then computed as in the proof that MERGING is in
SIZE-DEPTH(poly, constant).

UNARY-COUNT <4+ THRESHOLD
Given xy, ..., x,, the i bit of the unary representation of = x; is the result of
applying THRESHOLD to x, ..., x,, with threshold i.

THRESHOLD < 4. MAJORITY

Let x1,...,x, be the input bits to the threshold function and let k;...k,, be
the m-bit unary representation of the threshold k. Let y;=x; and y,,,; = k; for
1<i<m. Now
m 2m
Zx; 2 k iff ‘Ely,- > m.
= I=

i=1
This completes the cycle for the = 4.~class containing MULTIPLICATION.

MAJORITY < proj CONNECTIVITY
Since MAJORITY ¢ £, this is immediate from Theorem 3.2(1).

UNDIR-ST-CONNECTIVITY =, CONNECTIVITY
UNDIR-ST-CONNECTIVITY =, UNDIR-CYCLE
These are immediate from Theorem 3.2(1).

EULERIAN CYCLE £proj CONNECTIVITY

An undirected graph G has an Eulerian cycle iff G is connected except for
isolated vertices and every vertex of G has even degree [2]. Since [1] shows that
the connectivity test is in NONUNIF-£, it follows that EULERIAN-CYCLE is
in NONUNIF-£, so the reduction follows from Theorem 3.2(1).

CONNECTIVITY <pr0j EULERIAN-CYCLE

Given an undirected graph G, we describe an undirected graph G’ such that
G is connected iff G’ has an Eulerian cycle. If G has vertices V = {vq,..., v},
then G’ has vertices

Vulfuj|ll1<i<jsmluviyzil1gism}.

The edges {v;, y;}, {v;,z;} and {y;, z;} are in G’ for all i. The edges {v;, uiit, {uy, vit
and {v;, v;} are present in G’ iff the edge {v;, v;} is present in G. Note that every
vertex of G’ has even degree, and G’ is connected (except for isolated vertices)
iff G is connected.

“
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UNDIR-ST-CONNECTIVITY <0 DIR-ST-CONNECTIVITY
DIR-ST-CONNECTIVITY =p,,j STRONG-CONNECTIVITY
These are immediate from Theorem 3.2(3).

DIR-ST-CONNECTIVITY <) NETWORK-FLOW
There is a directed path from vertex v; to vertex v, in G iff there is a flow
of > 1 from v; to v,, when all edges of G have unit capacity.

The next three reductions form a cycle.

BIPARTITE-PERFECT-MATCHING <0j BIPARTITE-MATCHING
This is trivial.

BIPARTITE-MATCHING <,j NETWORK-FLOW

This reduction is given in [6, Thm. 6.11]. Let G be the given bipartite graph
with vertices uy, ..., 4y, V1, ..., ;. Form a directed flow network G’ with vertices
S, 8, ULy oees Uy V1, ..., V. The directed edges (s, u,) and (v;,f) in G’ have capacity
1 for all 1 < i< m. The directed edge (u;,v;) in G’ has capacity 1 (resp., 0) if the
edge {u;,v;} is present (resp., not present) in G. All other edges of G’ have
capacity 0. There is a flow of f from s to ¢ iff G has a matching of size f.

NETWORK-FLOW <y, BIPARTITE-PERFECT-MATCHING

Many of the details of this reduction were pointed out to us by N. Pippen-
ger; the reduction was observed independently by T. Feather. A few additional
details needed to make the reduction a projection are due to the authors. Let G
be the given directed flow network with vertices vq,...,vy,. Assume for the
moment that the edge capacities ¢(i,j) and the flow f are valid unary representa-
tions. It is convenient to describe the reduction as a composition of two projec-
tion reductions. In the first reduction, we transform G to a directed graph G’
with 2m3—m? vertlces. For each vertex v; of G, G’ has m? "copies" of v, namely
vip for 1 <p< m2. For all 1 <p < m?, the vertices v1p are called sources of G
and the vertices vmp are called rargets of G’'. For each pair (i,j) with 1 <i,j<m
and i j, G’ also has vertices ek for 1 <k <m. For each i, j, k, p and g with
1<i,j,k<m and 1 <p,q< m? the directed edges (v,p, eijx) and (e,,k, vjq) are
present in G’ iff k < c(i,j). Since c(i,j) is represented in unary, this is a projec-
tion reduction; that is, the entries of the adjacency matrix corresponding to the
edges (vip, e;x) and (eyjk, vjg) are simply the k™ bit of c(i, ). There is a flow of f
from v to v, in G iff

™ There are f vertex disjoint paths in G, each path being from some source
to some target, with the sources and targets of the paths also being
disjoint.

In the second step we transform G’ to an undirected bipartite graph G’
Replace each source u of G’ by a vertex u;. Replace each target u of G’ by a
vertex u;. Replace each other vertex u of G’ by the pair of vertices up and Ug
with an edge between up and u,. The edge {up, w,} is present in G’ iff the
directed edge (u, w) is present in &'. Let f1f>...f, be the unary representation of
the flow f, where r = m2. If up is the replacement for the source vy, and wg is the
replacement for the target v,,,, then the edge {up, w,} is present in G" iff fr=
Thus, for each p with 1 < p < f, the replacement u; for vy, cannot be matched
with the replacement wg for vy, but for f<p < m2, up can be matched with wy.
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It is not difficult to verify that (*) holds in G’ iff there is a perfect matching in
G’”'. The correspondence between vertex disjoint directed paths in G’ and perfect
matchings in G”' is as follows: If (u, w) is not a source-target pair, the edge (u, w)
of G’ is used in one of the directed paths iff the edge {up, we} of G” is used in
the matching; if the vertex u of G’ is neither a source nor a target, then u does
not appear on any of the directed paths iff the edge {up,uz} is used in the
matching. Details are left to the reader.

Finally, for each word c(i, ) and f we add a new component to G'' such that
the added components all have perfect matchings iff all c(i,j) and f are valid
unary representations. In general, let w = wj...w, be a binary word. We de-
scribe a bipartite graph H(w) with vertices ay,...,@m+1, b1,...,bms+1 such that
H(w) is obtained from w by a projection reduction and H(w) has a perfect
matching iff w e 1*0*. The edge {a,41,bm+1} and the edges {a;, b1} are in H(w)
for all i with 2<i<m+1. For 1<i<m, the edge {a;,b;; 1} is in H(w) iff
w;=1, and the edge {a;, b;} is in H(w) iff w;=0. If w¢ 1°0* then w; =0 and
wis1 = 1 for some i; this means that the vertex b;;; has no edges adjacent to it,
so H(w) cannot have a perfect matching. Conversely, if w= 1707 then the
perfect matching is {a;bi41} for 1<i<p, {apy1,b1}, and f{a; b} for
p+2<i<m+l.

BIPARTITE-MATCHING <0 CIRCUIT-VALUE

Since BIPARTITE-MATCHING ¢ &, this is immediate from Theorem
3.2(4).

This completes the proof of Theorem 3.1.

4. Upper bounds. It is not hard to show that BINARY-COUNT is in
SIZE-DEPTH(poly, O(logn)) and that DIR-ST-CONNECTIVITY is in
SIZE-DEPTH(O(2"), constant). These upper bounds can be improved. Regard-
ing DIR-ST-CONNECTIVITY, Schorr [18] gives a simulation of nondeterministic
Turing machines by circuits; the following Theorem 4.1 is implicit in the simula-
tion.

THEOREM 4.1 (Schorr). There is a constant b such that for any integer k > 0
there is a constant c such that

DIR-ST-CONNECTIVITY ¢ SIZE-DEPTH(2""*, bk).

Proof. We sketch the proof for completeness. Let G be the given directed
graph with m vertices. Let n= m? be the number of bits in G’s adjacency matrix.
A circuit of constant depth b and size exponential in n'/% can compute the
adjacency matrix of a new m-vertex directed graph G’ such that, for each pair of
vertices v; and v;, the edge (v;, v)) is present in G’ iff there is a directed path of
length < Tm!'/%7 from v; to vjin G. Fix an i and j, and let r = Tm!/%1. A
possible path is any sequence wy,...,w, of r+1 vertices such that wo=v; and
w,=v;. For each possible path p = (wy,...,w,), let 7(p) be the AND of the
entries in G’s adjacency matrix corresponding to the edges (w,, w;41) for 0 € ¢ <r.
Assume that all (i, {)-entries have been set to 1. Now the (i,j)-entry in the
adjacency matrix of G’ is the OR of 7(p) over all possible paths p from v; to ;.
By placing k copies of this adjacency matrix transformation in series, the
(1, m)-entry in the final matrix is 1 iff there is a path (necessarily of length < m)
from v to v, in G. 0O
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THeorem 4.2. If F = BINARY-COUNT or F is a family of one-output
symmetric Boolean functions, then for any ¢ > 0,

F € SIZE-DEPTH(O(n-2°¢ M%) O(log n/e-loglog n)).

Define 2-SIZE-DEPTH(S(n), D(n)) to be the class of problems F such that
each f, € F is computed by a fan-in 2 circuit of size < S(n) and depth < D(n).
Since Muller and Preparata [16] show that BINARY-COUNT and all families of
one-output symmetric Boolean functions are in 2-SIZE-DEPTH(O(n), O(log n)),
Theorem 4.2 is immediate from the following:

THEOREM 4.3. For any ¢ > 0,

2-SIZE-DEPTH(S(n), D(n))
€ SIZE-DEPTH(O(2(°¢ M°.§(n)), O(D(n)/e-loglog n)).

Proof. Any fan-in 2 circuit with one output and depth < (e/2)-loglogn can
depend on at most (log n)&/2 inputs, so by Lemma 3.3 it can be replaced by a
circuit of depth 2 and size O(2(°¢"°). Given a fan-in 2 circuit of depth D,
partition its nodes into levels Ly, L, ... such that level L; has nodes whose depth
is between (i-1)(e/2)loglogn and i(e/2)loglogn. View each node in L, as the
output node of a fan-in 2 circuit. By the observation above, each such circuit
can be replaced by a circuit of size O(2(°8™%) and depth < 2. Regard the
output nodes of these new circuits as the "inputs" to level L,. Apply this
process to Ly, L3, ... in sequence, so each level is compressed to depth 2. [J

By our reductions, the upper bound SIZE-DEPTH(2°"1/k, constant) holds for
any problem F <4 DIR-ST-CONNECTIVITY, and the upper bound
SIZE-DEPTH(poly, O(log n/loglog n)) holds for any problem F < 4.1 BINARY-
COUNT (e.g., MULTIPLICATION and SORTING). Theorems 4.1 and 4.2
could serve as an avenue for proving that certain of the =4 (-classes in Fig. 1
are distinct. For example, if

DIR-ST-CONNECTIVITY ¢ SIZE-DEPTH(poly, O(log n/loglog n))
then the class containing BINARY-COUNT and the class containing DIR-ST-
CONNECTIVITY are different. The following result shows that if these two

classes are equal then Savitch’s theorem [17] can be improved in the nonuniform
case.

THeOREM 4.4. If BINARY COUNT =,4..; DIR-ST-CONNECTIVITY, then
NONUNIF-A#Z = NONUNIF-2.

Proof. In the constant-depth circuit that performs the reduction DIR-ST-
CONNECTIVITY <4t BINARY-COUNT, replace each gate with fan-in r > 2
by a tree of depth O(logr); since r is bounded above by a polynomial in n, log r
= O(logn). Now replace each "black box" computing some member of
BINARY-COUNT by a Muller-Preparata [16] fan-in 2 circuit of depth O(logn)
and polynomial size. Thus

DIR-ST-CONNECTIVITY e 2-SIZE-DEPTH(poly, O(log n)).

The conclusion NONUNIF-A#Z = NONUNIF-Z now follows easily from two
facts:

(1) NONUNIF-A#'2 <proj DIR-ST-CONNECTIVITY (Theorem 3.2(3));

(2) The circuit value problem for fan-in 2 circuits of polynomial size and
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depth D(n) (2 logn) can be solved by a deterministic Turing machine in space
O(D(n)) (see [3, Lemma 1]).
Details are left to the reader. [

5. Conclusion. One direction for future work is to add other problems to the
classification begun in Fig. 1. A more fundamental open question is whether any
two of the groups in Fig. 1 can be collapsed into one =.4.i-class, or conversely
whether the < 4. relation between the two groups is strict. In proving the
latter, a stronger result would be obtained by replacing <c4.¢ With constant-
depth Turing reducibility, < 4.7, defined like < 4.;¢ except that now in the circuit
that performs the reduction there can be directed paths from the output of one
black box to the input of another black box. (We did not define < q.7 above
since we needed at most the power of <.q.y for our specific reductions.)

Another interesting area is to improve the known lower bounds on size-
depth circuit complexity. Furst, Saxe and Sipser [8] show that unbounded fan-in
circuits can possibly be used as a tool to separate the polynomial-time hierarchy
from PSPACE by an oracle. However, the lower bound for PARITY proved in
[8], that any constant depth circuit must have size at least n*108°7 for some
constant ¢, is not sufficient to imply the existence of such an oracle. Our reduci-
bilities suggest that an improved lower bound might be easier for a problem, such
as CONNECTIVITY, that lies above PARITY in the < 4. ordering.

Appendix. In several of the following problems we require the input to be of
a particular form. For example, in MERGING, the two input lists must be
sorted, and in BIPARTITE-MATCHING, NETWORK-FLOW, THRESHOLD
and UNARY-TO-BINARY, certain parts of the input must be valid unary
representations, i.e., words in 1*0*. If the input is not of the correct form, all
bits of the output are defined to be zero.

ADDITION (MULTIPLICATION)
INPUT: Two m-bit binary numbers (n=2m).
OUTPUT: Their sum (product).

BINARY-COUNT (UNARY-COUNT)
INPUT: n bits xq, ..., Xp.
OUTPUT: Ig(n)-bit binary representation of their sum 2 x;
(n-bit unary representation of Z x;).

BINARY-TO-UNARY
INPUT: n bits xq, ..., x,.
OUTPUT: 2'8(.pit unary representation of the number whose binary repre-
sentation is x1x3...X1g(n)-

BIPARTITE-MATCHING
INPUT: Adjacency matrix of a 2m-vertex bipartite graph and an m-bit unary
number k.
OUTPUT: Does the graph have a matching with > k edges?

BIPARTITE-PERFECT-MATCHING
INPUT: Adjacency matrix of a 2m-vertex bipartite graph.
OUTPUT: Does the graph have a perfect matching?
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CIRCUIT-VALUE
INPUT: Binary representation of a fan-in 2 circuit (i.e., every gate has fan-in
at most 2) with one output node, and an assignment of Boolean
values to all input nodes (the details of the binary representation are
not crucial).
OUTPUT: The Boolean value computed by the output node.

COMPARISON
INPUT: Two m-bit binary numbers z; and z, (n = 2m).
OUTPUT: Isz; > z5?

CONNECTIVITY (STRONG-CONNECTIVITY)
INPUT: Adjacency matrix of an undirected (directed) graph.
OUTPUT: Is the graph connected (strongly connected)?

DIR-ST-CONNECTIVITY (UNDIR-ST-CONNECTIVITY)
INPUT: Adjacency matrix of an m-vertex directed (undirected) graph.
OUTPUT: Is there a directed path (a path) from v; to v,,?

EULERIAN-CYCLE
INPUT: Adjacency matrix of an undirected graph.
OUTPUT: Is there a cycle that traverses every edge exactly once?

MAJORITY
INPUT: n bits xy,...,x,
OUTPUT: Is Ex; > n/2?

MAXIMUM
INPUT: A list of m m-bit binary numbers (n = m?).
OUTPUT: The largest number in the list.
MERGING
INPUT: . Two lists of m m-bit binary numbers, each list sorted in nonde-
creasing order (n = 2m?).
OUTPUT: The merged list (a number which appears k times in the input lists
will appear duplicated k times in the output list).

MULTIPLE-ADDITION
INPUT: A list of m m-bit binary numbers A1, ..., 4,,.
OUTPUT: The (m + lg(m))-bit binary representation of the sum X 4;.

MULTIPLICATION (see ADDITION)

NETWORK-FLOW
INPUT: m-bit unary numbers c(i, ) for each 1 <i,j<m with i# j, and an
m?-bit unary number f (n = m?3).
OUTPUT: Is there an integral flow of > f from v; to v,, in the directed flow
network with m vertices and capacity c(i,j) on edge (v;, v;) for each i
and j?

PARITY (ZERO-MOD-2¢, for constant c)
INPUT: n bits xq, ..., X,
OUTPUT: Is Zx; # 0 mod 2 (mod 2°)?
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SORTING
INPUT: A list of m m-bit binary numbers (n= m2).
OUTPUT: The same list sorted in nondecreasing order (a number which
appears k times in the input list will be duplicated k times in the
output list).

STRONG-CONNECTIVITY (see CONNECTIVITY)

THRESHOLD
INPUT: m bits xq, ..., X,;, and m-bit unary number k.
OUTPUT: IsZx; > k?

UNARY-COUNT (see BINARY-COUNT)

UNARY-TO-BINARY
INPUT: r-bit unary representation of a number k.
OUTPUT: lg(n)-bit binary representation of k.

UNDIR-CYCLE
INPUT: Adjacency matrix of an undirected graph.
OUTPUT: Is there a cycle in the graph?

UNDIR-ST-CONNECTIVITY (see DIR-ST-CONNECTIVITY)
ZERO-MOD-2¢ (see PARITY)
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