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PARALLEL ALGORITHMS FOR TERM MATCHING*

CYNTHIA DWORK®+, PARIS C. KANELLAKISf, AND LARRY STOCKMEYERY

Abstract. We present a randomized parallel algorithm for term matching. Let n be the number of nodes
of the directed acyclic graphs (dags) representing the terms to be matched. Then our algorithm uses O(log® n)
parallel time and M(n) processors, where M(n) is the complexity of nx n matrix multiplication. The
randomized algorithm is of the Las Vegas type, that is, the answer is always correct, although with small
probability the algorithm might fail to produce an answer. The number of processors is a significant
improvement over previously known bounds. Under various syntactic restrictions on the form of the input
dags, only O(n?) processors are required in order to achieve deterministic O(log? n) parallel time. Further-
more, we reduce directed graph reachability to term matching using constant parallel time and o(n?
processors. This is evidence that no deterministic algorithm can significantly beat the processor bound of
our randomized algorithm. We also improve the P-completeness result of Dwork, Kanellakis, and Mitchell
on the unification problem, showing that unification is P-complete even if both input terms are linear, i.e.,
no variable appears more than once in each term.
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1. Introduction. Unification of terms is an important step in resolution theorem
proving [14], with applications to a variety of symbolic computation problems. In
particular, unification is used in PROLOG interpreters [2], [7], type inference
algorithms [10] and term-rewriting systems [6]. Informally, two symbolic terms s and
t are unifiable if there exists a substitution of additional terms for variables in s and
t such that under the substitution the two terms are syntactically identical. For example,
the terms f(x, x) and f(g(y), g(g(z))) are unified by substituting g(z) for y and g(g(z))
for x.

Unification was defined in 1964 by Robinson in his seminal paper ‘“A Machine
Oriented Logic Based on the Resolution Principle” [14]. Robinson’s unification
algorithm required time exponential in the size of the terms. The following years saw
a sequence of improved unification algorithms, culminating in 1976 with the linear
time algorithm of Paterson and Wegman [12]. A general interest in parallel computing,
together with specific interest in parallelizing PROLOG, led Dwork, Kanellakis, and
Mitchell to search for a fast (time polynomial in log n) processor efficient (polynomially
many processors) parallel unification algorithm [4]. Their results were negative: they
proved that unification is complete for polynomial time, even if the input terms are
represented as trees. A similar result was independently derived by Yasuura [18]. (The
result in [18] is slightly weaker because it proves completeness for a more restricted
class of inputs.) Thus, the existence of a fast, efficient parallel algorithm is popularly
unlikely, in that it would contradict the popularly believed complexity theoretic conjec-
ture that P, the class of problems solvable sequentially in polynomial time, is not
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contained in NC, the class of problems solvable in polylogarithmic time using poly-
nomially many processors. However, Dwork et al. [4] found that term matching, a
special case of unification in which one of the terms contains no variables, is in NC.
Term s matches term t if there exists a substitution ¢ mapping variables in s to terms,
such that o(s), the term obtained by replacing each occurrence of each variable x in
s by o(x), is syntactically equal to . Dwork et al. [4] obtained a matching algorithm
requiring O(log® n) time and about O(n°) processors. Motivated by [4] some research-
ers interested in parallelizing PROLOG examined extant PROLOG programs to see
whether in practice unification can be replaced by term matching. Preliminary results
show that “often” the full power of general unification is not needed, and that term
matching indeed suffices [9].

Let NC*(f(n)) be the class of problems solvable in time O(log* n) using f(n)
processors on inputs of size n. Similarly, let RNC*(f(n)) be the class of problems
solvable by a randomized algorithm in time O(log® n) using f(n) processors on inputs
of size n. In defining these classes, our model of computation is the Concurrent-Read
Exclusive-Write Paraliel RAM (PRAM) [5], with word size O(log n) on inputs of size n.

The algorithm of [4] shows that term matching is in NC*(M(n?)), where M(m)
is the number of arithmetic operations required for m X m matrix multiplication.
Coppersmith and Winograd [3] show that M(m) = O(m>”), so the algorithm of [4]
uses about n’ processors. The current paper provides substantially improved upper
bounds on processors for the term-matching problem at no asymptotic cost in running
time. However, the new algorithm is randomized, in that the individual processors
make random choices (flip coins). It is a Las Vegas algorithm: an answer is always
correct, but there is some small probability (taken over the set of coin tosses) that an
execution of the algorithm will fail to produce an answer. In that case the algorithm
can be run again. Our approach will be to show how to test two terms for syntactic
equivalence in RNC*(M(n)), where n is the total number of nodes in the dag representa-
tions of the two terms. This is the only randomized portion of the algorithm. We then
show that term matching reduces to equivalence testing, and the reduction can be
performed in NC?(n?). Since M(n)=n’ the principal result for term matching then
follows as an easy corollary.

The remainder of the paper is organized as follows. Section 2 contains results on
testing two terms for syntactic equivalence. In addition, this section contains some
“evidence” that M(n) is a lower bound on the number of processors needed for NC
solutions to both term matching and equivalence, by showing that the directed acylic
graph reachability problem reduces to testing for equivalence by an NC°(n?) reduction.
Section 3.1 describes the reduction from term matching to equivalence testing. For
certain special cases we can improve on the time and/or processor bounds obtained
in the general case when both terms are represented by arbitrary dags. These results
are described in § 3.2. Finally, § 4 strengthens the known P-completeness results for
unification, showing that unification is P-complete even if both terms are linear (each
variable appears at most once in each term) and are represented by trees, but where
there can be sharing of variables. (In contrast, if there is no sharing of variables and
one of the terms is linear, then the problem can be solved in NC as we show in § 3.3.)
The proof of P-completeness of unification of linear terms is quite different from
and more intricate than that of [4], and in a sense provides a strongest possible
P-completeness result for a restricted form of unification.

2. Testing for equivalence of terms. A term is defined recursively as follows. A
variable symbol is aterm; if f is a k-ary function symbol, k =0 (0-ary function symbols
correspond to constants), and ¢, - - -, # are terms, then f(t,, - -, ) is a term.
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A dag is a directed acyclic graph. If G is a dag and u is a node of G, then the
subdag rooted at u is the subdag consisting of all nodes and edges reachable from w.
A term t can be represented by a labeled dag in a very natural way. If ¢ is a constant
or a variable, then the representation is just a single node labeled t. When t=
f(ty, -, ), k=1, t can be represented by a dag consisting of a node labeled f with
k outedges, labeled, respectively, 1 through k, such that the head of the edge labeled
i is the root of a subdag representing t;, for each i=1, - - -, k. Figure 1 shows some
examples of labeled dags and their corresponding terms. Note that if the term contains
a repeated subexpression then its corresponding dag is not unique; for example, a
term g(¢, t) may be represented by using a single dag for both occurrences of ¢ or by
using a separate dag for each occurrence. A node u of a dag is a root if there are no
edges directed into u, and u is a leaf if there are no edges directed out of u (each leaf
must be labeled by either a constant or a variable). A term is linear if no variable
appears more than once in the term. If the term ¢ is linear and if G is any dag
representation of 7, then for each variable x occurring in ¢ there is exactly one path
in G from the root to a node Jabeled x. Let u and v be nodes of outdegree k, and let
u; (respectively, v;) denote the head of the edge from u (respectively, v) with label i,
i=1,-- -,k Then we say u; (v;) is the ith child of u (respectively, of v), and we say
u; and v; are corresponding children of u and v.

g
1 2
f
1 2
®
X X
g(f(x,x),h(x,a,b)) glf(x,x),f(x,x))

F1G. 1. Some examples of term dags.

Two rooted dags G and H are said to be equivalent, written G = H, if they represent
the same term. An instance of the equivalence problem is a triple (D, r,, r,), where D
is a labeled dag with two roots r, and r,. The two terms to be tested for equivalence
are the terms represented by the subdags rooted at the two roots. (D could consist
of two connected components, one with root r, and the other with root r,. In general,
we allow the dags rooted at r, and r, to share nodes since our equivalence algorithm
handles this smoothly.) The time and processor complexities of our algorithms are
expressed as functions of n, the size of an instance, defined to be the maximum of the
number of nodes of D and the maximum outdegree of any node of D. Since in most
applications the number of nodes will dominate the maximum outdegree, there is no
harm in viewing n as the number of nodes. For cases where the maximum outdegree
dominates, it is easy to express the complexities of our algorithms as functions of two
separate parameters, the number of nodes and the maximum outdegree.

All logarithms in this paper are to the base 2.

2.1. A Las Vegas algorithm for testing equivalence of terms. Let M (n) be an upper
bound of the form c¢n®, for constants ¢>0 and w >2, on the number of arithmetic
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operations in a straight-line algorithm which computes nX n matrix multiplication
where the algorithm contains no divisions and where all scalars (i.e., numerical
constants) are integers. The Coppersmith-Winograd algorithm [3] is of this form, so
M(n)= O(n*).

Consider an instance (D', r,, r;) of the equivalence problem and let n be its size.
Let G’ and H' be the dags rooted at r, and r,, respectively. Since two terms are equal
if and only if they are equal when we substitute constants for variables, we may assume
that D’ contains no variables. This will simplify matters in this section since we will
want to use “variable” to refer to polynomial variables rather than term variables.
Briefly, our approach is to represent G’ and H' by multivariate polynomials Pg and
P, in such a way that G’ and H' are equivalent if and only if the corresponding
polynomials are equivalent. We then use a randomized algorithm of Schwartz [15] to
check the equivalence of the polynomials. Since Schwartz’s result deals with sequential
algorithms, we have some additional work to prove that the algorithm can be modified
to run in RNC*(M(n)).

In defining the polynomials, it is useful to first perform some modifications to the
dag as follows. Given a labeled dag D', we first add a new node z to D', and ‘add
edges from every node in D’ to the new node z, making z the unique leaf of the
resulting dag, call it D. Each new edge (v, z) is D labeled with the outdegree of v in
D. This process of adding a new leaf, connecting it to all nodes in the original dag,
and labeling the new edges, is called preparing the dag, and D is said to be prepared.
We view D as a term dag with the single constant symbol z; the arity of each function
symbol labeling a node of D (except the new node) is one more than the arity of the
function symbol labeling the corresponding node of D’. If G and H are the prepared
dags rooted at r, and r,, respectively, in D then it is obvious that G and H are
equivalent if and only if G' and H' are equivalent. Therefore, we shall work with
prepared dags in the remainder of this section.

Given a labeled prepared dag G, we define the corresponding polynomial Pg as
follows. Our intention is to assign variables to edges; in § 2.1, “variable” means a
variable of some polynomial Pg. Each path from the root to the leaf will then yield
a monomial defined as the product of the variables assigned to the edges along the
path. The final polynomial will then be the sum over all paths p from root to leaf of
the monomial corresponding to p. We will show that two dags are equivalent if and
only if their corresponding polynomials are equivalent. Reducing equivalence testing
for term dags, which is in NC, to testing equivalence of polynomials, which is not
even known to be in P, is not obviously progress. However, we will then apply the
algorithm of Schwartz, modified to run in RNC, testing equivalence of the polynomials
at a randomly selected point. A negative answer to this test is a proof of inequivalence.
As we will see, a positive answer can sometimes be turned into a proof of equivalence.
Sometimes a positive result will be inconclusive, in which case the algorithm can be
run again. '

We now describe the selection of the variables. Consider an arbitrary path from
the root to the leaf. In selecting the variables corresponding to the edges of the path,
care must be taken that the ordering information is not lost. In other words, given the
monomial corresponding to the path we must be able to reconstruct the path. To this
end, for each node v we compute the number of paths from v to z in G. Note that
since G is prepared, if v is a proper ancestor of u then the number of paths from v
to z exceeds the number from u to z; this fact will play an important role in the proof
of Lemma 1.

VaRIABLE NAMING RULE. Let v be a node of G labeled with the k-ary function
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symbol f, and let m be the number of paths from v to the leaf z. Then for each
je{l, -, k}, fi" is the variable assigned to the edge from v labeled j.

For each path p directed from the root of G to z, let the monomial u(p) be the
product of all the variables corresponding to the edges of p. Then P =} u(p).

LEmMMA 1. Two prepared term dags G and H are equivalent if and only if P; and
Py, are equivalent polynomials.

Proof. We begin with the if direction. Let the degree of a polynomial denote the
maximum number of variables in any monomial of the polynomial. Then P;= Py
implies that the two polynomials are of the same degree. The proof proceeds by
induction on k, the degree of the polynomials.

k=1. In this case the two polynomials each consist of a single monomial (this is
because of the way we defined a prepared dag). Thus, for some unary function symbols
g and h we have P; =g} and Py = h;. Clearly, these polynomials can be equivalent
if and only if g = hj}, so the symbols g and h must be identical.

k> 1. We assume the result inductively for polynomials of degree less than k and
prove it for k. Let g (respectively, h) be the label of the root of G (respectively, H)
and let i (respectively, j) be the number of paths from the root of G (respectively, H)
to the leaf z. Write P =Y _, git, and Py =¥"_, h.s,, where the superscripts in the
t, and s, are less than i and j, respectively. Then i=j, as otherwise the maximum
superscripts of the two sets of variables differ. Thus, none of the #, contain any variable
name of the form h; and similarly, no s, contains any g;. Because the only function
symbol superscripted with i in Py is h, it follows that g = h, whence a = b. Rewriting
Py, with g replacing h yields P, =Y%_, gis,. For any xe{1, - - -, a}, setting g} to 0
for all y # x yields git, = gks,, whence ¢, =s,. Since the degree of ¢, is strictly less
than k, we see by the inductive hypothesis that the term represented by ¢, is equivalent
to the term represented by s,. Let r, and r, be the roots of G and H, respectively.
Since g = h both roots are labeled with the same function symbol. Further, ¢, = s, for
all x, so the corresponding arguments of g are the same in the two dags. Thus, the
two dags are equivalent.

We now prove that if the two prepared dags are equivalent then the corresponding
polynomials are equivalent. Because the height of a dag corresponds to the maximum
depth of nesting of parentheses in the term it represents, if G= H then the two dags
are of the same height. The proof proceeds by induction on k, the height of the dags.
We strengthen the induction hypothesis, showing that if two dags are equivalent then
the number of paths from the root to the leaf is the same in the two dags.

k =1. All prepared dags of height 1 contain a unique edge, from root to leaf, so
the corresponding terms are just 1-ary function symbols. Thus, G = H implies the two
dags are identical, whence they give rise to the same polynomial.

k> 1. We assume the result inductively for dags of height less than k and prove
it for k. Let r, and r, be the roots of G and H, respectively. If G= H then the two
roots are labeled with the same function symbol, say g, whence both roots have the
same outdegree, say a. Further, because the dags are equivalent, foreach ic{1,- - -, a},
the subdag rooted at the ith child of r, is equivalent to the subdag rooted at the ith
child of r,. Since these subdags are of height strictly less than k we see by the inductive
hypothesis the polynomials corresponding to the subdags rooted at the ith children
of the roots are equivalent, and the number of paths from the ith child of r, to the
leaf is equal to the number of paths from the ith child of r, to the leaf, for all i. Thus,
the total number of root-leaf paths is the same in the two dags. Let m denote this
number. Let P; denote the polynomial corresponding to the subdag rooted at the ith
child of either root. Then P;=g{"P,+- - -+ g4 P,, and this is precisely Py. O
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Remarks. (1) If the variables were not superscripted with the path numbers Lemma
1 would not hold. This is because the variables f, and f, commute, i.e., f, f>= f.f;, but
the directed paths labeled f,f, and f.f, are not the same in a dag.

(2) Two very natural approaches to handling the commutativity problem do not
work. Affixing ¢ X ¢ matrices to the edges, for some constant ¢, cannot work. This
follows from a theorem of Amitsur and Levitzki [1] which states that there are
polynomials Q,(x;, -+, x,.) and Qu(x,, * - -, x,.) with zero-one coefficients, involving
noncommuting variables x,, * * +, X,., such that Q, and Q, are not equivalent in general,
but Q, and Q, are equivalent over the ring of ¢ X c matrices. A second approach,
computing for each node v the maximum distance from v to z (instead of the number
of paths) requires a special kind of matrix multiplication, in which the inner operation
is + and the outer operation is max. It is not known how to compute the “product”
of two n X n matrices in M(n) steps using this definition of multiplication.

In order to use Lemma 1 to test for equivalence of term dags, we must address
several issues.

The number of paths from a node to the leaf may be as large as n" ', even though
the outdegree of each node is bounded by n. Since the word size of our parallel random
access machine (PRAM) is at most logarithmic in n we cannot actually compute these
numbers. Similarly, we cannot evaluate the polynomials P; and Py, as for many
possible choices of values for the variables the values of the polynomials will be too
large to handle. We use modular arithmetic to handle these problems, performing all
arithmetic modulo random primes, which in turn raises the question of how to obtain
a random prime.

Testing equivalence of multivariate polynomials is not even known to be solvable
in polynomial time, let alone in NC, even when we can actually evaluate the poly-
nomials, much less when we cannot. For this we resort to a modification of Schwartz’s
randomized algorithm.

The Schwartz algorithm is Monte Carlo, in that an answer of “inequivalent” is
always correct, but an answer of “equivalent” is correct only with high probability.
Thus, the final issue is that of deriving a proof of equivalence when Schwartz’s algorithm
tells us two polynomials are equivalent. If the polynomials are arbitrary this problem
is open. Our polynomials are not arbitrary; they are constructed from term dags. This
can sometimes be exploited to obtain a proof of equivalence.

LEMMA 2. For each constant k, there is an RNC?*(log® n) algorithm that, on input
n, with probability at least 1— n~* produces a random prime ge I ={2,- - -, n*}.

Proof. Our approach is to choose r random numbers, q;,* -, g.€ 1 where r=
d log? n for an appropriate constant d. Each g¢; is tested for primality (k+2)logn
times in parallel using Rabin’s randomized test [13]. Of those g; having passed all
tests one is selected at random. Rabin’s algorithm runs in time O(log” n) on inputs
from I When given a prime, the algorithm always answers “prime”; when given a
composite, it answers ‘“‘composite” with probability at least 3

There are two ways in which the algorithm could fail to produce a prime. It may
be that none of the g; are prime. The Prime Number Theorem implies that for some
constant ¢, independent of n, the probability that all r are composite is at most
(1—c/log n)", which is at most n~%/2 if r = d log® n, for some constant d independent
of n. If at least one g; is actually prime, it is still possible that a composite will be
chosen. However, since Rabin’s algorithm errs with probability at most 1 the probability
that a composite passes all (k+2) log n tests is at most n~“~% Thus, the probability
that even one composite passes all tests is at most nn™*2, which is less than n™*/2
for sufficiently large n. 0
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The first source of error in our randomized protocol for testing equivalence of
term dags is in the selection of g, because our algorithm may fail to produce a prime.
However, even if a prime g is produced, performing arithmetic modulo g introduces
a second source of error, as distinct numbers r and s may be congruent mod g. Thus,
when computing the superscripts for the variables mod g, two variables assigned to
edges from nodes with differing numbers of paths to the leaf may receive the same
superscript. We must therefore choose g from a range sufficiently large as to make this
event unlikely.

DEFINITION. Integer m is bad for the pair of integers (r, s) if r# s but r and s
are congruent mod m.

LEMMA 3. For every pair of distinct numbers r, s = n" there are at most n log n bad
primes.

Proof. Let {p,, -, p.} be the set of primes bad for (r,s). Then the product
T=p,DP," * * Py is also bad for (r, s). Since r, s=n" it must be that 7 =n" (otherwise
the two numbers could not be congruent mod ). On the other hand, since each p; =2
we have 2" = 7. Thus, 2* =7 =n", whence x = n log n, as was to be shown. 0

Let us say a prime q is bad for a prepared dag if there exist two nodes u and v
in the dag such that r and s are the number of paths to the leaf from u and v,
respectively, r # s, and q is bad for 7, s.

COROLLARY 4. Let D be a prepared dag with n nodes in which each node has
outdegree at most n. Then a random prime q drawn from [2, n*] is bad for D with
probability at most O(n*>* log® n) for any fixed k= 3.

Proof. There are at most n” pairs of nodes, and for each pair there are at most
nlog n bad primes, so there are at most n’log n primes bad for D. By the Prime
Number Theorem there are Q(n*/(klogn)) primes in [2, n*]. Thus, if a prime is
selected uniformly at random from this range, then the probability that the chosen
prime is bad for D is at most

O(n2 log n k l::kg n) =0(n* *log® n). 0

Let Q be a polynomial in ¢ variables with integer coefficients. An assignment for
Q is a (¢+1)-tuple of integers A= (i;, - - -, i,, p). We define

Q(A)=Q(,, --,i)  (modp).

An assignment A is a modular zero of Q if Q(A)=0. We let maxv (Q, m) denote the
maximum value attained by Q over the rectangle in which the absolute value of each
variable is bounded by m.

In order to bound the probability of error in testing the polynomials for equality,
we appeal to the following theorem due to Schwartz [15].

THEOREM (Schwartz). Let2m+1=c- deg (Q), let I be the set of integers of absolute
value =m, let J be a set of primes, and suppose that the product of the ¢”'|J|+1 smallest
primes in J exceeds maxv (Q, m). Then if Q is not identically equal to zero, the number
of elements of I' x J which are modular zeros of Q is at most 2¢”'|I|'|J|.

The Q we will be considering is P; — Py, which is of degree at most n (the number
of nodes in the union of the two dags), and contains t = n® variables. Suppose we wish
to bound the probability of choosing a modular zero by n*. We apply Schwartz’s
Theorem as follows. Let b= k+1 and m = n®. Let J be the set of primes in [2, n*"],
and I =[-n® n®], where J is the set from which we select our random prime p and
I is the interval from which each of our ¢ variables is chosen. Each term in Q is the
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product of at most n variables, and Q contains at most n” terms, so

maxv (Q, n®)=n""n"

To satisfy the conditions of the theorem we take ¢ = (2n” + 1)/ n. Estimating the number
of primes in J to be dn*?/2b log n, for some constant d, the condition that the product
of the ¢™'|J]+1 smallest primes exceeds maxv (Q, m) is clearly satisfied if

dn2b+l
(2n®+1)2blogn
(because each prime is no smaller than 2). This reduces to
dn®® = 2b(b+1)(2n° +1)(log n)?,

which is clearly true for all sufficiently large b, assuming n = 2. We therefore have the
following corollary.

COROLLARY 5. Let Q be a polynomial of degree n=2 such that Q#0. For any
fixed k there is a constant b, depending only on k, such that by choosing a random
assignment A for Q by choosing a random prime in the interval [2, n°"] and randomly
selecting values for the variables in Q from I =[~n® n®], Prf[Q(A)=0]= nk O

When our polynomial Q is formed from two term dags it is obvious how we obtain
a proof of inequality (Q(A) # 0), while if Q(A) =0 we may have hit a modular zero
at A. However, in some cases we can actually obtain a proof of equivalence. In part
this is due to the fact that when we evaluate the polynomials corresponding to the two
roots of our dags, we simultaneously evaluate all n polynomials corresponding to the
subdags rooted at each of the n nodes, just as when testing directed graph reachability
by computing the transitive closure of the adjacency matrix we obtain reachability
information for all pairs of points.

Let D be a prepared dag with two roots, and let G and H be the subdags rooted
at these roots. Choose variables for the edges according to the Variable Naming Rule.
For each node v, let P, be the polynomial induced by the subdag rooted at v. By
convention, P, is the identically zero polynomial where z is the unique leaf added
when the dag was prepared. Running our parallelized version of Schwartz’s algorithm
with a particular assignment A to the variables induces an equivalence relation on the
nodes of D, where distinct nodes x and y are in the same class if and only if the
algorithm tells us P.(A)= P,(A). Let us denote this relation by x =, y. For each pair
of =, nodes we check two things. First, we verify that both nodes are labeled with
the same function symbol. Second, we check that the corresponding children of each
pair of =, nodes are also =, . We claim that if both these tests are passed for all pairs
of =, nodes then the subdags rooted at x and y are equivalent.

LEMMA 6. Let D and A be as above. Let x and y be nodes of D satisfying x=, y.
If for all u, v such that u =, v and u and v both belong to the union of the subdags induced
by x and y, it is the case that the labels of u and v agree and each pair of corresponding
children of u and v are =, , then the subdags rooted at x and y are equivalent.

Proof. The proof is by induction on k, the length of the longest path from x to
the leaf z.

k=0. In this case x = z, which has the label z If the conditions of the lemma are
satisfied then y has label z, so y =z as well.

k> 0. Assume the result inductively for k-1, and assume the conditions of the
lemma hold. Then the labels of x and y agree. Further, corresponding children of x
and y are =, . Thus, by induction, the subdags rooted at their corresponding children
are equivalent. It follows immediately that the subdags rooted at x and y are
equivalent. 0O

=n(b+1)logn



PARALLEL ALGORITHMS FOR TERM MATCHING 719

Lemma 6 says it is sometimes possible to prove equivalence of polynomials
generated from term dags. In particular, this can be done when for every pair of =,
nodes, the subdags rooted at the two nodes are actually equivalent. It is possible that
two nodes labeled with different function symbols are “equivalent” under = ', - In this
case we can prove nothing about the ancestors of these nodes and we must run the
algorithm again.

THEOREM 7. The problem of testing equivalence of two term dags can be solved by
a Las Vegas algorithm in RNC*(M (n)). For any fixed k the probability that no answer
is produced can be bounded above by n™*,

Proof. The algorithm is as follows. The algorithm involves an integer parameter
k' which is chosen depending on k. Let (D', r,, r,) be an instance of the equivalence
problem, consisting of a dag D’ and two roots.

1. Prepare D’ by adding a new leaf z, adding an edge from each node to z, and
labeling the added edges. Let D denote the resulting dag.

2. Choose a random prime g€ [2, n*].

3. For each node v compute the number (mod g) of paths from v to z.

4. For each edge e compute the name of the associated variable according to the

Variable Naming Rule.

Sort the variable names and remove duplicates from the sorted list.

6. Choose an assignment A by choosing random values from the range [—n*', n*]
for the variables in the list produced at the previous step and by choosing a
random prime p € [2, n®*].

7. For each node v in D evaluate P,, the polynomial corresponding to the subdag
rooted at v, at the point A chosen in step 6. If r, %, r, then output “inequivalent”
and halt.

8. If ry=ar, then try to prove equivalence by the method of Lemma 6. If successful,
output “‘equivalent,” else output “?”,

b

We now describe steps 3, 7, and 8 in more detail.

For simplicity, let n denote the number of nodes in the prepared dag D (the
original dag plus the new leaf). To perform step 3, we define an n x n matrix E whose
ij entry is the number of edges from i to j (mod g). In other words, E; is the number
(mod g) of paths of length 1 from i to j (diagonal entries are 0). In general, (E "),-j is
the number (mod q) of paths of length k from i to j. Since we are interested in all
paths of all lengths from each node to z, we compute the sum of all powers of E from
E°to E™ ' where n=m <2n and m is a power of 2. To do this we use the well-known
identity

I+E+E*+E’+---+E™ '=(I+E)YI+E)(I+E*---(I+E™?).

Multiplication of m x m matrices can be computed in NC'(M(n)) (see, e.g., Pan and
Reif [11, Appendix A]). Therefore, the powers of E needed to compute the rhs can
be computed in NC*(M(n)) by repeated squaring. All arithmetic is done mod g. Since
the rhs contains at most log n terms the product can also be computed in NC*(M (n))
once the powers of E are computed. Let E* =Z:"=;' E’ (mod q). Then for each node
v, E¥, is the number (mod g) of paths from v to z.

The evaluations of the polynomials P, proceed in a similar fashion. Thus, to
perform step 7 we define a matrix B whose ij entry is the sum of the values chosen
for the variables assigned to the edges from i to j. Viewed differently, B; is the value
of the polynomial corresponding to the subdag containing paths of length 1 from i to
j. In general, (B*), is the value of the polynomial which is the sum of the monomials
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corresponding to all paths of length k from i to j. As in the case of the computation
of path numbers, we are interested in B*=1+ B+ B>+ B’+- -+ B™ '. This is com-
puted as described above, all arithmetic being performed mod p. Then B}, = P,(A).
For any two nodes x and y we have

x=y L= B;kz=B;,kz.

To perform step 8, the verification of equivalence, we proceed as follows. For all
nodes x and y such that x=, y we check that the labels of x and y are equal (if they
are not then we can prove nothing, and the algorithm outputs “?”). Given that they
are equal, we wish to check that corresponding children of =, nodes are themselves
=, . Let e=(u,v) be an edge with label i. Corresponding to e there is a triple
(B%,, i, BY,)=(P,(A), i, P,(A)). The set of triples corresponding to all the edges of the
prepared dag are sorted lexicographically. We then examine the sorted list for a
pair of adjacent triples whose first and second components match but whose third
components differ. If no such pair exists the algorithm outputs “‘equivalent,” else it
outputs “?2.”

This completes the description of the algorithm. It remains to prove correctness
when the random choices are good and to analyze the probability of making a bad
random choice. Let G and H be the subdags rooted at r, and r,, respectively.

By Lemma 1, G= H implies P; = P;;, and in the absence of a bad random choice
in step 2, G # H implies P % Py. If P;# Py, then in the absence of a bad choice for
the assignment A at step 6, r; %, r,, so we have a proof that G # H. If Pg= Py, then,
in the absence of a bad choice for A, for all pairs of nodes u, v such that u=,v it is
the case that the subdags rooted at u and v represent the same terms, in which case
we have a proof of equivalence by Lemma 6.

This proves correctness in the absence of bad choices. We now bound the probabil-
ity of making a bad choice.

As shown in Lemma 2 and Corollary 4, we can bound the probability of a bad
choice in step 2 by n™* for any fixed k. We now examine the probability of obtaining
a “?” output given that no bad choice was made in step 2.

A “? will be produced if for some pair of nodes u and v, the subdags rooted at
the nodes are inequivalent but u=, v. By Lemma 2 and Corollaries 4 and 5 the
probability of this occurring for a particular pair of nodes can be bounded above by
n~* for any fixed k. As there are only n” pairs of nodes, the probability of this event
occurring for any pair of nodes can be similarly bounded.

This completes the proof of Theorem 7. O

2.2. Directed reachability reduces to equivalence testing. The dag reachability prob-
lem is: Given a dag D and two distinguished nodes s and t of D, does there exist a
path from s to t? The size of the instance is the number of nodes in D. While directed
reachability is known to be complete for NSPACE(log n) with respect to logspace
reductions, and therefore to be in NC, little is known about the number of processors
needed to solve this problem in polylog time. In fact, all known NC or RNC algorithms
compute the transitive closure of the adjacency matrix for D by repeated squaring
and therefore use M (n) processors (to within logarithmic factors). Thus, while reducing
directed reachability to term equivalence does not yield a lower bound on the number
of processors needed to test for equivalence in NC, it does provide some “evidence”
that M(n), the processor bound obtained in Theorem 7, cannot be significantly
improved.

THEOREM 8. The directed acyclic graph reachability problem is NC°(n?) reducible
to the equivalence testing problem.
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Proof. Given a dag D, with distinguished nodes s, and t, we will construct a pair
of term dags E, and E, which will be equivalent if and only if there is no path from
5, to t, in D,. The construction is illustrated in Fig. 2.

Without loss of generality we assume D, has a unique root (if this is not the case
then create a new root with edges to each of the original roots). We begin by turning
D, into a term dag. For each k, 0=k =n, and for each node v of D, with outdegree
k, label v with the function symbol f*. Label the outedges from 1 to k in arbitrary order.

Iabel(t1) #* Iabel(tz)

F1G. 2. The dags constructed in the proof of Theorem 8.

Create a copy D, of D,, identical to D, but with t,, the D, copy of t,, labeled
with a new function symbol g. Let s, be the D, copy of s,. There is a path from s, to
t, if and only if s, and s, are the roots of inequivalent subdags. However, we are not
done, since the s nodes are internal, and we have been assuming that an equivalence
algorithm takes as input two roots and determines whether the dags rooted at these
roots represent equivalent terms.

We next create a new dag E, composed of D, and D, by creating a new root r,
and making the roots of D, and D, first and second children, respectively, of r,. Let
s, be the third child of r,. The edges from r, to its children are labeled accordingly,
and r, is labeled with function symbol f>.

Finally, we create a copy E; of E,, identical to E, but with the 3-edge of r,, the
root of E,, pointing to the E, copy of s, (instead of to the copy of s,). The subdags
rooted at the first and second children of the two roots are identical by construction.
Thus, the two dags are equivalent if and only if the subdags rooted at the third children
are equivalent. As observed above, this holds if and only if there is no path from s,
to ¢, in D,.

If D, contains n nodes then the four copies can be constructed in O(1) time using
n’ processors (one per edge). The two new roots and six additional edges are added
in constant time as well. O

3. Reducing term matching to equivalence testing. In § 2.1, we showed that two
term dags can be tested for equivalence in RNC*(M(n)). We now show that these
bounds apply to the term-matching problem as well. Recall that term s matches term
t if and only if there exists a o mapping variables to terms such that o(s) =t Note
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that matching is not a symmetric relation. An instance of the term-matching problem
is a pair of disjoint labeled term dags representing the terms s and ¢ to be matched.
The size of the instance is the number of nodes in the union of the two dags. Although
our matching algorithm requires the two dags to be disjoint, nondisjoint instances can
be transformed to disjoint instances by performing a reachability computation from
the two roots; as in the proof of Theorem 7, this can be done in NC*(M(n)). In
particular, disjointness is not needed in Corollary 10. Both term matching and
equivalence testing are special cases of the unification problem. In the term-matching
problem one of the terms (the second one) is considered constant: o is not applied to
the second term. In the equivalence problem, both terms are considered constant.

In § 3.1, we describe our results for general dags. Special cases are discussed in § 3.2.

3.1. Term matching on general dags. In this section we will prove the following
theorem.

THEOREM 9. Term matching reduces to testing for equivalence in NC3(n?).

From Theorems 7 and 9 we obtain our main result.

CoroOLLARY 10. Term matching can be solved by a Las Vegas algorithm in
RNC?*(M(n)).

As mentioned in the Introduction we also have some specialized algorithms for
term matching which depend on the form of the constant term. However, the general
outline of the algorithm is the same in all cases. For ease of exposition we break the
algorithm into four main steps. Since the first term, henceforth s, will always be
represented by an arbitrary dag G, we may assume without loss of generality that each
variable of s is the label of exactly one node of G (multiple copies of x can be merged
into one copy).

Steps 1-4 below outline all our matching algorithms. Let G and H denote the
dags representing s and ¢, respectively.

Match (G, H).

1. A processor is assigned to each node of G. A spanning tree T of G is formed
by having the processor assigned to each node v of G (except the root) arbitrarily
choose one of the edges directed into v.

For each node v in G, there is a unique sequence of spanning tree edges from
the root of G to v. We use p(v) to denote the sequence of edge labels along this path.
An embedding is a mapping d from nodes of G to nodes of H such that d maps the
root of T to the root of H and if v and u satisfy p(v) =p(u)-i then there is an edge
labeled i from d(u) to d(v). In other words, d(u) is that node in' H reached by
following the edge sequence p(u) from the root of H. If T cannot be embedded in H
then there is a sequence of edge labels present in G but absent from H; hence G does
not match H.

2. Embed T in H, if possible, and let d be the resulting embedding. Check that
for all nodes u of T, u and d(u) are labeled by the same function symbol. If
there is no embedding or if the check fails, then output *“no match.”

3. For each node v of G labeled by a variable, say x, let o(x) be the term rooted
at d(v) in H. Apply the substitution o to G by replacing all edges of the form
(u, v) by (4, d(v)). Let C = 0(G) denote the dag obtained from G by performing
the substitution.

4. Test dags C and H for equivalence. G matches H if and only if C=H.

Note that the mapping o can be described by specifying, for each variable x
labeling a node v of G, the pair (x, d(v)). :
To prove correctness of the algorithm we need the following lemma.



PARALLEL ALGORITHMS FOR TERM MATCHING 723

LEMMA 11. Let G, H, and C be as in Algorithm Match. Then G matches H if and
only if C=H.

Proof. Clearly, if C = H then G matches H, as then C= a-(G)— H, where o is
the substitution described in step 3.

To prove the opposite direction we note that if G'matches H, then the substitution
o found by the algorithm is the only one possible. Suppose otherwise that there was
some other ¢’ such that o’'(G)= H. Let x be any variable of G and let v be the node
labeled by x. Since the roots of o'(G) and H are equivalent, the two nodes reached
by following the path p(v) from both roots must be equivalent. These nodes are v in
G and d(v) in H, where d is the embedding found by the algorithm. Therefore,
g(x)=0a(x). O

To prove Theorem 9 we need only prove we can perform the embedding (step 2)
in NC?(n?). To do this, we will need a few lemmas.

LEMMA 12. Given a directed path p with n nodes whose nodes are labeled with
function symbols and whose edges are labeled with integers, and given a term dag H with
k nodes (k=n), there is an algorithm which checks whether p can be embedded in H
(and produces an embedding if there is one) in NC'(kn).

Proof. We form the product graph Z = p x H whose nodes are all pairs of nodes
(u, v) where uc p and ve H. There is an edge labeled i from (u, v) to (u/,v) in Z if
and only if there are edges (u, u’) in p and (v, v') in H both labeled i Let p, and p,
be the initial and final nodes of p, respectively, and let r be the root of H. Then p can
be embedded in H if and only if there is a path in Z from (p,, r) to (p,, w) for some
node w of H.

Note that since p is a path, each node in the product graph Z has outdegree at
most 1. We can therefore apply the standard technique of ““pointer chasing.” We assign
a processor to each node of Z. These processors initialize two arrays; a bit array E
which indicates whether a node is known to be reachable from (p,, r) (should one
exist), and a successor array S.

1. Initialization:
If a=(p,, r) then E(a)=1, else E(a)=
If there is an edge of Z from a to b, then S(a) =
For all nodes w in H, S((p,, w)) = (pn, W).
2. Repeat [log n] times:
If E(a)=1 then E(S(a)):=1;
S(a):=S(S(a)).
3. Test for embedding:
If S((p,, r))=0 then output “No embedding” and halt.
4. Find embedding given that one exists:
If E((u, v)) =1 then v is the embedding of u.

The number of nodes a for which E(a)=1 doubles at each step until all nodes
reachable from (p,, r) are found. Thus, after execution of the algorithm E(a)=1 if
and only if a is reachable from (p,, r). Moreover, after execution of the algorithm
S((p,, r)) #0 if and only if a node of the form (p,, w) is reachable from (p,,r). O

LEMMA 13 (Tarjan and Vishkin [16]). Let T be a tree of size m. There are NC'(m)
algorithms which produce (a) the depth-first numbering of T and, (b) for each node u of
T, the number of nodes in the subtree rooted at u.

The following lemma shows that the embedding of a tree in a dag can be
accomplished in NC?*(n?), completing the proof of Theorem 9.
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LeMMA 14. The problem of embedding a tree T having m nodes in a dag H having
k nodes is in NC*(km).
Proof. The embedding is done by a recursive divide-and-conquer approach.

1. For each node ve T compute the size of the subtree rooted at v. This can be
done in NC'(m) by Lemma 13(b). Let the weight of a directed edge (u, v) be
the size of the subtree rooted at v. Consider any path originating at the root
of T defined by selecting the heaviest edge out of each node to be in the path
(ties are broken arbitrarily). Let us call such a path a heavy path.

2. Embed the heavy path. This can be done in NC'(km), by Lemma 12.

3. For each node v in the heavy path embedded in step 2, embed all the children
of v. This can be accomplished in NC°(km).

4. For each node u embedded in step 3, embed the subtree rooted at u in the
subdag rooted at d(u) where d is the embedding constructed in step 3. These
embeddings are performed recursively in parallel.

Although the number of nodes not embedded by the end of step 3 may be quite
large, each remaining subtree contains at most m/2 nodes. Letting Time(m) be the
parallel time to embed a tree of size m, this yields the recurrence relation

Time(m) = c log m+ Time(m/2),

which has solution O(log® m). Since the subtrees embedded in step 4 are pairwise
disjoint, it is easy to see that km processors suffice to do all these embeddings in
parallel. 0O

3.2. Special cases of term matching. In this section, we describe algorithms for
checking equivalence of constant dags C and H (as obtained in step 3 of Algorithm
Match) when H is of a special form. When used in step 4 of Algorithm Match these
yield improved results for term matching. We assume as in § 3.1 that the two input
dags are disjoint.

Let u and v be nodes of a term dag. We say u = v if the term represented by the
subdag rooted at u equals the term represented by the subdag rooted at v. A dag is
compact if u=v=>u =1y, for all nodes u and v.

The proof of the following lemma is straightforward.

LEMMA 15. Let G be an arbitrary dag with spanning tree T. Let H be a second dag
and let d be an embedding of T in H. Then G matches H if and only if the following two
conditions are satisfied.

(a) For each node v of G not labeled with a variable name, the label of v equals the
label of d(v).

(b) For each edge e = (u, v) in G but not in the spanning tree T, d(u); = d(v), where
i is the label of e and d(u); denotes the ith child of d(u) in H 0O

Lemma 15 implies term matching is particularly easy when H is a compact dag,
for in that case checking conditions of the form d(u);=d(v) reduces to checking
d(u);=d(v).

COROLLARY 16. The problem of determining whether an arbitrary dag matches a
compact dag is in NC*(n?). 0O

A slightly harder case is when H is a tree. However, since the tree representation
of a term is unique, testing equivalence of trees (as required by Condition (b) of
Lemma 15) reduces to checking that the trees are identical, and while this is more
difficult than checking equality of nodes we can solve it efficiently using some of the
results of Tarjan and Vishkin stated in Lemma 13. In effect, we will change H into a
compact dag by determining, for all nodes u and v of H, whether u=u.
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The following uses the depth-first numbering produced by Lemma 13(a). This
numbering respects the edge labels, in the sense that for each node v the numbers in
the subtree rooted at the ith child of v are smaller than those assigned to nodes in the
subtree rooted at the (i+ 1)st child.

LEMMA 17. Checking equivalence of trees of size n is in NC'(n).

Proof. We will show that the depth-first numbers and node labels of the nodes in
a tree completely specify the tree. The lemma then follows by Lemma 13(a).

Given a tree T of size n we show by induction on k that the subtree consisting
of the first k nodes in the depth-first numbering of T can be recreated from the
depth-first numbers and labels of these nodes. In the following, let ““node i”” denote
the node in T with depth-first number i.

The basis k=1 is trivial, since the root is always labeled 1.

k> 1. We assume the result for subtrees of size k—1 and prove it for k. Given
the subtree S consisting of the first k — 1 nodes of T, we find the largest i = k such that
m, the number of children of node i in S, is less than the arity of the label of node i.
Then node k is the (m+1)st child of node i Clearly, k cannot be the child of any
node with depth-first number greater than i, since all of these have all their children
in S. On the other hand, node k cannot be the child of any node with depth-first
number less than i. To see this, assume for the sake of contradiction that node k is
the child of a node u, where u <i. Let w be the least common ancestor of u and i. Let
j be the label of the edge from w on the path to i. By the inductive hypothesis, w was
correctly given its first j children in the construction of S. In particular, the jth child
of w is added only if the subtrees rooted at the first j — 1 children are complete. Thus,
if u does not have all its children in S it must be that u = w. In this case, the first
available slot for another child of u is the (j+ 1)st. But all descendants of the jth child
of u must have numbers smaller than that of the (j+ 1)st, so if i does not have all its
children in S, k cannot be a child of u. []

Our approach to matching a general dag with a tree is to find all equivalent nodes,
thereby effectively turning the tree into a compact dag. We first eliminate many pairs
of nodes from consideration since they are obviously not equivalent, and then apply
Lemma 17 in parallel to the remaining pairs.

The size of a node v, denoted size(v), is the number of nodes in the subtree rooted
at v. Clearly, nodes u and v can be equivalent only if size(u) = size{v), but the converse
is false. However, this observation allows us to bound the total cost of checking the
subtree equivalences to yield the following.

LEMMA 18. The problem of determining all equivalent nodes of a tree is in NC'(n?),
where n is the size of the tree.

Proof. The general idea is to apply Lemma 17 in parallel to all pairs of nodes u,
v for which size(u) =size(v). However, we must be careful, as a brute force analysis
leads to a processor bound of O(n®). For each i, 1=i=n, let n; denote the number
of nodes of size i. By Lemma 17, the number of processors sufficient to check equivalence
of all pairs u, v of nodes of size i is in}. Thus, the total number of processors needed
to find all equivalent nodes is ¥, in7.

Now, ¥, n; = n, and for each i, in; = n. Multiplying each side of the last inequality
by n; yields in? = nn,. Putting all this together we obtain

Sinf=sYnm=nYy n,=n O

Applying the algorithm of Lemma 18 and then using the approach of Lemma 15
proves that testing whether an arbitrary dag matches a tree is in NC?*(n?). In fact we
can do better in terms of time.
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THEOREM 19. Term matching for a general dag G and a constant tree H can be
done in NC'(n?).

Proof. We only have to argue for O(log n) instead of O(log® n) parallel time.

In the case that H is a tree, the only part of the algorithm which uses time log® n
is the embedding of the spanning tree T in the tree H. Since T and H are both trees,
the embedding can be done in time O(log n) as follows.

Construct the product graph Z whose nodes are all pairs (u, v) such that u is a
node of T and v is a node of H. There is an edge labeled i directed from (u, v) to
(u', v') if there is an edge labeled i from u to ¥’ in T and an edge labeled i from v to
v’ in H. Since T and H are both rooted trees, it is easy to see that Z is a forest of
rooted trees. Letting r, and r, be the roots of T and H, respectively, we want to find
all nodes of Z which are reachable from (r,, r,) since the embedding maps u to v if
and only if (u, v) is reachable from (r,, r,). Since Z contains at most m = n> nodes
this can be done in NC'(n?) as follows.

We first transform Z from a forest of trees to a single tree by creating a new root
and creating an edge from the new root to each of the roots in Z. For simplicity, let
Z denote the resulting tree. We then compute a depth-first numbering of Z and size(a)
for each node a in Z. By Lemma 13 these tasks can be accomplished in NC' (m). Let
a be a node of Z and let k be the depth-first number of a. Then the descendants of
a are those nodes with depth-first numbers k, - - -, k+size(a)—1. O

Verma, Krishnaprasad, and Ramakrishnan [17] have recently shown that term
matching of two trees is in NC*(n) (whereas NC'(n?) is a corollary of Theorem 19).

3.3. Another special case of unification in NC. In this section, we examine
unification of two terms in the special case that the terms share no variables and at
least one of the terms is linear. In performing unification on term dags we need a way
of representing the result. In general, two terms are unifiable if and only if a certain
type of equivalence relation can be constructed on the nodes of the labeled dag
representing these terms. Given this relation, we can define the reduced graph, obtained
by coalescing all equivalent nodes into a single node. We can extract a unifier o from
the reduced graph by taking o(x) to be the term in the reduced graph that is represented
by the node formed from the equivalence class of x.

A relation R on the nodes of a term dag is a correspondence relation if for all
pairs of nodes u, v in the dag

uRv = u,Rv;,

where u; and v; are corresponding children, respectively, of u and v. A correspondence
relation that is also an equivalence relation will be called a c-e relation.

A relation R on the nodes of a term dag is homogeneous if for all pairs of nodes
u, v which are labeled by function symbols we have

uRv = label(u) =1label(v).

An equivalence relation R on the nodes of a dag is acyclic if the R-equivalence
classes are partially ordered by the arcs of the dag. Paterson and Wegman [12] have
shown that if ¥ and v are nodes of a labeled dag G then the terms represented by the
subdags with roots u and v, respectively, are unifiable if and only if there exists an
acyclic homogeneous c-¢ relation R on the nodes of the dags satisfying uRv. Since we
are considering the special case where one of the terms is linear and the two terms do
not have any variables in common, it is easy to see that cyclic c-e relations cannot
arise, so we do not mention the acyclicity condition further.
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A substitution o is more general than a substitution r if there exists a substitution
p with 7= p o o. If R is the minimal c-e relation with uRv then the unifying substitution
obtained from the reduced graph defined by R as described above is the most general
unifier. The size of the most general unifier is the number of nodes in the reduced
graph obtained by coalescing nodes equivalent under R, where R is minimal.

LemMMA 20. Unification of two linear terms represented by trees with no shared
variables can be solved in NC'(n?). Moreover, the most general unifier is linear and has
size at most the sum of the sizes of the original trees.

Proof. Let T, and T, be trees representing linear terms with no shared variables,
and n be the size of the instance. As in the proof of Theorem 19, we construct the
product graph Z whose nodes are all pairs of the form (u, v), where u is a node of
T, and v is a node of T,. There is an edge labeled i directed from (u, v) to (#’, v") in
Z if there are edges labeled i from u to ' in T, and from v to v' in T,. As in the
proof of Theorem 19, letting r, and r, denote the roots of the two trees, respectively,
we find all nodes in the product graph reachable from (r,, r,). We do not repeat the
details here. Let R be the relation on nodes of T, U T, defined by: uRv if and only if
(u, v) is reachable in Z from (r,, r,). For all pairs of internal nodes u, v we see that
uRv=>u;,Rv;, where u; and v; are corresponding children of u and v, respectively. It
is also clear that because each node in the union of the original trees is related to at
most one other node, R is an equivalence relation (trivially). We note that R is the
minimal c-e relation in which the two roots are related. Once we have constructed Z
and determined R, we can easily check R for homogeneity. If so, then as shown in
[12], the two trees are unifiable. We construct the reduced graph and, from it, the most
general unifier, as described in the beginning of this section.

Because Z contains at most n? nodes, this can all be done in NC'(n?). Further,
because the reduced graph contains no more nodes than the union of T, and T, the
most general unifier has size at most the sum of the sizes of the two trees. Finally, the
most general unifier is linear since it is obtained by a substitution which maps each
variable to a linear term such that different variables are mapped to linear terms
involving disjoint sets of variables. 0

Using Lemma 20 we can now prove the main result of this section.

THEOREM 21. Let T be a tree representing a linear term and H be an arbitrary
rooted dag sharing no variables with T. Then the unification problem for T and H can be
solved in NC*(n?).

Sketch of Proof. Without loss of generality we assume that for each variable x
there is at most one node of H labeled with x. Let r, and r, be the roots of T and H,
respectively. Again we are searching for the minimal c-e relation R on the nodes of
T U H such that r,Rr,. We first modify the recursive embedding technique of Lemma
14 to handle the embedding of a tree in a dag when the dag is not necessarily constant,
as in the present case. Thus, there could be some nodes of T that cannot be embedded
in H because some path in H ends with a node labeled by a variable while the
corresponding path in T continues. As in the case of Lemma 14, the modified algorithm
is in NC?*(n?). We define R to be the reflexive transitive closure of R’, where uR'v if
u is mapped to v by the embedding. Check R for homogeneity.

If uRv where u is a node of T and v is a node of H, and u is labeled by a variable
x, then we define a(x) to be the term represented by the subdag rooted at v. Because
there is a unique path to a node labeled x in T there is nothing to check. More
interesting is the case when there exist several nodes u,, - - -, u; in T and a node v in
H labeled with a variable y such that ,Rv, i=1, - - -, k. This can happen if there are
k paths to v in H. In this case we must unify all k trees rooted at the u;. However,
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because T is linear these subtrees share no variables, so we can apply Lemma 20. In
order to perform all the unifications quickly in parallel, we split the subtrees into at
most k/2 pairs, and unify all pairs in paralle]l. By Lemma 20 the size of the most
general unifier for each pair is no larger than the sum of the sizes of the original trees.
We can therefore apply the lemma recursively on the =[k/2] remaining trees. Because
k=n and each application of Lemma 20 can be performed in NC'(n?) the entire
procedure is in NC*(n?). O

Remark. By modifications to the proofs of Lemma 20 and Theorem 21, it is easy
to see that unification of a linear term with an arbitrary term can be done in NC even
if both terms are represented by general dags. An outline of the algorithm follows. Let
G and H be the given dags with roots r, and r,, respectively, where G represents a
linear term and H represents an arbitrary term. Form the product graph Z as in the
proof of Lemma 20, and solve a reachability problem (in NC*(M(n?))) to find all
nodes of Z reachable from (r,, r,). Let R be the reflexive transitive closure of the
relation R’ defined by uR’v if and only if (u, v) is reachable from (r,, r,). Proceeding
as in the proof of Theorem 21, the only difference is the case where there are several
nodes u,, - -, # in G and a node v in H labeled with a variable such that u;,Rv for
all i. Now the u; are roots of subdags which represent linear terms; as before, these
subdags share no variables. By again solving a reachability problem on a product
graph, the unification problem for two linear terms which do not share variables and
which are represented by general dags can be solved in NC. As before, the most general
unifier is linear and its size is at most the size of the union of the two dags (nodes
which appear in both dags are counted only once in the union).

4, Unification of linear terms is complete for P. Recall that a term is linear if no
variable appears more than once in the term.

THEOREM 22. Unification is P-complete even if both terms are linear, are represented
by trees, and have all function symbols with arity =2.

Proof. The proof is by a reduction from the circuit value problem (CVP) which
was proved P-complete by Ladner [8]. Because of the nature of our reduction, it is
useful to require that instances of CVP be in a particular form described next. An
instance of CVP is a dag whose nodes are of four types. An input node has no edges
directed in and one edge directed out; this edge is called an input edge. An output node
has one edge directed in and no edges directed out; each dag has exactly one output
node and the edge directed into this node is called the output edge. A NAND node
has two edges directed in and one edge directed out. A fan-out node has one edge
directed in and any nonzero number of edges directed out. In addition, each input
edge is labeled with a Boolean value, either 0 (false) or 1 (true). Given the assignments
of Boolean values to the input edges, Boolean values are associated with all the other
edges in the obvious way: the value of the edge directed out of a NAND-node is the
Boolean NAND of the values of the two edges directed in; the value of all edges
directed out of a fan-out node is the same as the value of the edge directed in. The
problem CVP is to recognize the set of instances such that the output edge has value
1. (Although Ladner’s proof of the P-completeness of CVP uses Boolean functions
other than NAND, any such function can be built from a small number of NANDs
and Boolean constants, so CVP as defined above is P-complete.)

Given an instance G of CVP, we transform it to a pair of linear tree terms, T
and T,, with roots r, and r,, respectively. For simplicity, we let the two trees have
function symbols with arities greater than 2. The trees can then be further transformed
by replacing each subterm f*(¢,,¢t,, - -, t) involving a k-ary function symbol by
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the term f(t,,f(t,, -+, f(t_1, t&)) - - ) involving the 2-ary function symbol f In
addition to the two roots, T; has nodes A, and B, and T, has nodes -C, and D, for
each edge e of G. Unifications among these four nodes encode the Boolean value of
e as follows (in this proof we indicate a unification between two nodes by writing ~
between them): if e has value O, then A, ~ D, and B,~ C,; if e has value 1, then
A.~ C, and B,~ D,. The appropriate unifications of nodes corresponding to input
edges are forced by making these nodes be corresponding children of the roots. For
example, if e is the ith input edge and if e is assigned value 1, then there is an edge
labeled 2i—1 from r, to A., an edge labeled 2i—1 from r, to C,, an edge labeled 2i
from r, to B,, and an edge labeled 2i from r, to D,.

For each fan-out node and NAND node of G, edges and nodes are added to the
trees to force the unifications encoding Boolean values to be propagated correctly. For
each fan-out node of G, if the node has edge e directed in and edges e,, - - -, ¢, directed
out, then for each i with 1=i =k, there is an edge labeled i from A, to A,, from B,
to B,, from C, to C,, and from D, to D,,. For each NAND node, with edges e’ and
e” directed in and edge e directed out, the trees contain the nodes and edges shown
in Fig. 3 (to simplify notation, A’ is written for A, etc.).

Fi1G. 3. The transformation of a NAND node used in the proof of Theorem 22. Nodes of T, (resp., T,)
are drawn as open circles (resp., solid circles). Edges of T, (resp., T,) are drawn as solid lines (resp., dashed
lines). Common leaves which are labeled by variables are drawn as solid squares.

We must also define the labeling of tree nodes. Each nonleaf node is labeled by
the function symbol f** where k is the outdegree of the node. The leaves which are
drawn as squares in Fig. 3 are each labeled by a different variable symbol. If p is the
output edge of G, then A, and C, are labeled with the constant symbol g, and B, and
D, are labeled with a different constant symbol h. This completes the description of
the transformation.

We must argue that the output edge of G has value 1 if and only if T, and T,
are unifiable. To do this it is sufficient to show that the transformations of fan-out
nodes and NAND nodes correctly propagate Boolean values according to the encoding
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of values by unifications described above. For fan-out nodes this is obvious. To verify
this for the NAND construction in Fig. 3, it is helpful to break the construction into
two parts. The first part, which consists of the part of the figure above the nodes marked
a, b, ¢, u, v, w (including these six nodes), computes the numerical sum of the two
input values, viewing these values as integers rather than Boolean values. The three
possible sums, 0, 1, and 2, are encoded by unifications among a, b, c, u, v, w. It is easy
to check that the four possible values for e’ and e” force unifications among a, b, c,
u, v, w as follows:

e=0and e’'=0 implies a~u,b~v,c~w,
e=0ande"=1 implies a~uv,b~w,c~u,
e'=1lande"=0 implies a~v,b~w,c~u,
e=1lande"=1 implies a~w,b~uc~u.

We can now forget about the top half of Fig. 3 and just check that these three
possible unifications among a, b, ¢, 4, v, w force the proper unifications among A, B,
C, D. The verification of the following is again straightforward:

a~u,b~v,c~w implies A~Cand B~D (e=1),
a~v,b~w,c~u implies A~Cand B~D (e=1),
a~w,b~u,c~v implies A~Dand B~C (e=0).

If the output edge p of G has value 0, then an attempt to unify the roots r, and r,
will force the unification of two nodes A, and D, labeled with different constant
symbols. On the other hand, if the output edge has value 1, then the two roots can be
unified. 0O

In the case that the two terms do not share any variables, we have noted in § 3.3
that unification can be solved in NC if one of the terms is linear. The following easy
corollary of Theorem 22 shows that this is in some sense the best possible, since if
both terms are barely nonlinear the problem becomes P-complete.

THEOREM 23. Unification is P-complete even if both terms are represented by trees,
no variable appears in both terms, each variable appears at most twice in some term and
all function symbols have arity =2.

Proof. As in the previous proof, we allow function symbols with large arities. The
proof is by a reduction from the unification problem for linear trees. Let T, and T,
be a given pair of trees representing linear terms, and let x,, x,, - - -, X., be the variables
which appear in both trees. For each i with 1=i= m, replace the single occurrence of
x; in T, by a new variable x;, and replace the single occurrence of x; in T, by x;,. For
each i, we can force x;, and x;, to be equal by increasing the arity of the roots from
2 to 2+ m, adding a new edge labeled i+2 from the root of T, to a new node labeled
x;,, and adding a new edge labeled i+2 from the root of T, to a new node labeled
x;. Clearly, the transformed trees are unifiable if and only if T, and T, are unifiable. 0O
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