Theoretical Computer Science 3 (1977) 1-22.
© North-Holland Publishing Company

THE POLYNOMIAL-TIME HIERARCHY*

Larry J. STOCKMEYER

Mathematical Sciences Department, IBM Thomas J. Watson Research Center,
Yorktown Heights, N.Y. 10598, U.S.A.

Communicated by A. Meyer
Received April 1975

The polynomial-time hierarchy is that subrecursive analog of the Kleene arithmetical
hierarchy in which deterministic (nondeterministic) polynomial time plays the role of recursive
(recursively enumerable) time. Known properties of the polynomial-time hierarchy are summar-
ized. A word problem which is complete in the second stage of the hierarchy is exhibited. In the
analogy between the polynomial-time hierarchy and the arithmetical hierarchy, the first order
theory of equality plays the role of elementary arithmetic (as the w-jump of the hierarchy). The
problem of deciding validity in the theory of equality is shown to be complete in polynomial-
space, and close upper and lower bounds on the space complexity of this problem are established.

1. Introduction

One goal of complexity theory is to be able to characterize the amount of
computational resource (for example, time or space) required to solve specific
problems. For a number of well-known problems, there are presently large gaps
between known upper and lower bounds on the requisite time and space. For
example, it is not known if there exists an algorithm which recognizes the satisfiable
Boolean formulas and which runs within time bounded by a polynomial in the
length of the input.

Failing to find close explicit upper and lower bounds on the complexity of a given
problem, one would nonetheless like to classify the problem as being complete in
some larger class of problems; see, for example, (2, 6, 8, 12, 13, 15, 24, 25]. Such a
result relates the complexity of the particular problem to that of the larger class as a
whole. For example, since Cook [6] has shown that the set of satisfiable Boolean
formulas is complete in /P with respect to polynomial-time reducibility, it follows
that the set of satisfiable formulas can be recognized in deterministic polynomial
time if and only if ? = NP (where ? (N P) s the class of languages recognizable by
deterministic (nondeterministic) Turing machines within time polynomial in the

*Portions of this work were reported previously in [17, 25]. This work was supported in part by a
National Science Foundation Graduate Fellowship and by NSF Grant GJ-34671.

1

2 L.J. Stockmeyer

length of the input). The large number of common computational problems which
are complete in AP testify to the importance of this question of whether # = NP.

One purpose of the current work is to describe and summarize several basic
properties of a “hierarchy” of classes of sets called the polynomial-time hierarchy
(P-hierarchy). Briefly, the ?-hierarchy is that subrecursive analog of the Kleene
arithmetical hierarchy (see [18]) in which deterministic polynomial time plays the
role of recursive time. We are interested in studying the ?-hierarchy mainly
because we feel that it will prove technically useful in classifying (by completeness
results) certain recursive problems just as the arithmetical hierarchy has proven
useful in classifying certain nonrecursive problems.

The classes of the ?-hierarchy, 3%, IT% and Af for integer k =0, can be defined
as follows (complete definitions appear in Section 3): 38=J15= A= P; 3.,
(A%.)) is the class of sets accepted within polynomial time by nondeterministic
{(deterministic) Turing machines with oracles (cf. {4, 6]) for sets in 3%; and IT%., is
the class of sets whose complements are in 3%.,. In particular, note that 37 = NP,
and 3{UITEC A%, C 2%, N II%.,. The relation “set A is accepted within polyno-
mial time by a nondeterministic (deterministic) Turing machine with oracle B” is
the analog of the relation “A isr.e. (recursive) in B” in the arithmetical hierarchy.

For example, one problem for which the %-hierarchy might provide a precise
classification is the classical minimization problem for Boolean formulas (see [10]).
This problem can be cast as a language recognition problem by defining MIN to be
the set of all pairs (F, k) such that F is (the encoding of) a Boolean formula in
disjunctive normal form, k is (the binary representation of) an integer, and there is
a disjunctive form formula G equivalent to F, such that G contains k or fewer
occurrences of variables. It is not hard to see that MIN € 35. Somewhat informally,
this is true because, given an input (F, k), a nondeterministic Turing machine can
“guess’” a Boolean formula G containing at most k occurrences of variables, and
consult an oracle to determine whether or not the formula (F & G) is a tautology.
It is easy to see that the set of nontautologous formulas belongs to /P = 3% (see
[6]), and therefore MIN belongs to 3%.

It is not known however if MIN € 37 U I1%. Indeed, it is not known if 32# 32 or
if 3¢# 3%, for any k =0. However, one result (Theorem 3.2) states that if the
hierarchy collapses at the kth stage (i.e., 3§ = 3£.,), then it collapses entirely above
the kth stage (i.e., 2§ = 37 for all j = k). In particular, if 32# 2 for some k =1,
then 2 # N'P. By ostensibly enlarging the class of sets B for which BZ 2 implies
P # NP, the P-hierarchy may be useful in settling this question.

In Section 4, we consider the existence of complete sets in the 2-hierarchy.
Although we do not know if MIN is complete in 3%, we do exhibit a simple explicit
word problem (the inequivalence problem for integer expressions) for which the
% -hierarchy provides a precise classification; this problem is shown to be complete
in X% (with respect to logspace-reducibility [12, 25]).

The final two sections, 5 and 6, are devoted to the second main purpose of this

The polynomial-time hierarchy 3

paper, to provide new examples of sets which are complete in ?-SPACE.
(?-SPACE is the class of languages recognizable by deterministic Turing machines
within polynomial space.) In fact, these results reveal an interesting relationship
between the 2-hierarchy and polynomial space, since these complete sets can be
viewed as the natural analog for the ?-hierarchy of §’ (the w-jump of #) for the
arithmetical hierarchy. One of these sets, denoted 1EQ, is the set of sentences
which are valid in the first-order theory of equality. We show that 1EQ is complete
in #-SPACE with respect to logspace-reducibility. Although it is not known if IEQ
can be recognized in deterministic polynomial time, a consequence of completeness
in ?-SPACE is that IEQ € ? iff ? = 2-SPACE. We also establish a lower bound
of ¢n'? on the space required (infinitely often) to recognize 1EQ.

2. Preliminaries

Familiarity with the basic concepts of formal language theory and automata
theory is assumed; see, for example, [11]. A more detailed discussion of this
preliminary material can be found in [24, Chaps. 2, 3]. We only outline the
necessary concepts here.

If @ is a finite alphabet, @* denotes the set of all words over @ including the
empty word A. @ = @* — {A}. | w | denotes the length of the word w. N denotes the
nonnegative integers. If k EN, O“ ={w € @*: |w| = k}. Most of the computa-
tional problems considered here concern the recognition of a set of words (or
language) A C ©", for some finite alphabet @. If A C ®*, then A = @* — A, the
alphabet @ being clear from context. If € is a class of languages, then co-4 =
{A: A €€}

Our models of computation are nondeterministic and deterministic Turing
machines [11] which have, in addition to the read/write work tapes, an input tape
and an output tape. The input tape is scanned by a 2-way read-only head, and the
output tape by a 1-way write-only head. Call these models simply Turing machines.
When used for language recognition, certain states of the machine are designated as
accepting states. An accepting computation of a Turing machine M on an input
word x is a computation of M which starts with the word x written on the input
tape with all work tapes blank, and terminates in an accepting state. The time of a
computation is its length. The space of a computation is the number of tape squares
visited during the computation by heads on the work tapes.

Precise definitions are not given here since our results are invariant under the
differences in the definitions of Turing machines and their computations foundin the
literature, for example, [2, 11, 24]. In fact, since we specify time bounds only to
within a polynomial, and space bounds only to within a constant factor, our results
remain true with respect to a wide variety of machine models, including random
access register machines [2, 7]. See [2, 7] for relationships between Turing machines
and other machine models.

4 L.J. Stockmeyer

Definition. Let @ be a finite alphabet, A C @*, M be a Turing machine, and
F:N—N. M accepts A within time F(n) (within space F(n)) iff for all x € ©":

(i) If x € A then there is an accepting computation of M on input x such that
the time (space) of the computation does not exceed F(|x [); and

(i) if xZ A then there is no accepting computation of M on input x.

Similarly, for finite alphabets @ and A4, a deterministic ‘l'uring machine computes
the function f, f: @ — A", within time (space) F(n) iff for each input x € ©*: (i)
the time (space) of the unique computation of M on input x does not exceed
F(| x|); and (ii) the computation produces f(x) on the output tape and then halts.

Let NTIME(F(n)) (DTIME(F(n))) be the class of languages accepted by
nondeterministic (deterministic) Turing machines within time F(n). Let
NSPACE(F(n)) (DSPACE (F(n))) be the class of languages accepted by nondeter-
ministic (deterministic) Turing machines within space F(n). In particular, let

? =) DTIME(n*); N2 = |J NTIME (n*);
k=1 k=1
#?-SPACE = |J DSPACE (n*).
k=1

Let logspace be the class of functions computable by deterministic Turing
machines within space logn. The base of the logarithm is immaterial to our
discussion; for definiteness it is convenient to define logn = [log. n] if n > 1, and
log1 =1, where [r] is the least integer not less than r.

The following type of efficient reducibility plays a key role in the sequel. Since
this reducibility corresponds to the “many-one” reducibilities of recursive function
theory, following a definitional suggestion of Knuth [14] we use the term transfor-
mation for functions which reduce one set to another.

Definition. Let A C @ and B C A" for finite alphabets & and A. A transforms to B
within logspace via f (A <, B via f)iff f is a transformation, f: ®*— A", such that
f € logspace and x E A & f(x)EB forall x € 0",

Remark. Since logspace is closed under composition [12, 25], <, is a transitive
relation on sets of words. It is well-known that a Turing machine which computes
within space logn also computes within polynomial time; therefore A <., B
implies A is polynomial-time-transformable to B in the sense of Karp [13]. Lind
[16] gives a machine independent characterization of logspace by which one can
give rigorous proofs of membership in logspace. Although, for the transformations
described in this paper, we at most sketch proofs of membership in logspace.

Definition. Let B be a set and % be a class of sets.
(1) €=.,.B iff A <, B forall A€<€.

The polynomial-time hierarchy 5

(2) B is log-complete in € iff
(i) € <., B, and
(ii) BE €.

3. The polynomial-time hierarchy

In this section, we define the #-hierarchy, summarize several of its known
properties, and state some open questions. As outlined in the introduction, the
2 -hierarchy is defined in terms of polynomial-time bounded oracle machines. Our
notion of oracle machine is the query machine of [4, 6]. A query machine is a
(nondeterministic or deterministic) Turing machine with a distinguished work tape
called the query tape, and three distinguished states, the query state, the yes state,
and the no state. The computations of a query machine depend not only on the
input, but also on a given set of words called the oracle. The actions of a query
machine with oracle B are identical to those of Turing machines with one
exception. If the machine enters its query state at some step, the machine next
enters its yes state if the nonblank portion of the query tape contains a word in B
otherwise the machine next enters its no state. An oracle machine M operates
within time T(n) iff, for every input x, every computation of M (relative to any
oracle) halts within T'(| x |) steps. Let M (B) denote the language accepted by oracle
machine M with oracle B. '(The definition of acceptance for oracle machines is
analogous to that for ordinary Turing machines.) The following notation of [27]
defines the analogs in the ?-hierarchy of the relations “recursive in” and ““r.e. in”
in the arithmetical hierarchy.

Definition. (a) Let B be a set of words.

P(B) (N¥P(B))={M(B): M is a deterministic (nondeterministic) oracle
machine which operates within time p(n) for
some polynomial p(n)}.

(b) For a class of sets &,

P(€)= U P2(B), NP(€)= U N&P(B).

The polynomial-time hierarchy was defined previously by Meyer and the author
in [17]; the notion was also known to Karp [13].

Definition. The polynomial-time hierarchy (P-hierarchy) is {3 II%, A% k =0},
where

3E=1l=Af=P;

6 L.J. Stockmeyer

and for k =0,
30 = NP(ZD),
1%, = co-NP (20),
AL, = P(3D).
Also define 23 = U5 , 3%

In particular, note that 3} = X% and II?= co-N%P. Since obviously B € ?(B)
and ?(B)C NP(B)Nco-NP(B) for any set B, the P-hierarchy possesses the
following inclusion structure:

JPUlliC AL, C XL N8, for all k=0.

It is not known however if these inclusions are proper. The following questions
are open:

(i) Does X% # X%, for all k =0?

(i) Does X% # 1% for all k =1?

(iii) Does A} # 34N 1§ for all k =17
Considering the analogs of these questions for the arithmetical hierarchy [18], (i)
and (ii) are true, while (iii) is false (taking the analog of A% to be the class of sets
recursive in B for some B € X, _,).

The 2 -hierarchy can be characterized as those languages definable by polyno-
mial bounded quantification over the variables of relations in %. This characteriza-
tion further illuminates the analogy between the % -hierarchy and the arithmetical
hierarchy, and facilitates the proofs of certain properties of the %-hierarchy.

An n-ary relation on words is a subset of @ X @7 X ... X @ (n times) for some
finite alphabet @. If R is such a relation and € is a class of languages, then by
R € € we mean that the language {x, # x, # ... # x.: R(x,x5,..., x,)} belongs
to € for some new symbol # & 6.

Theorem 3.1 (see [25]). Let © be a finite alphabet and A C ®*. A € 3% iff there is
a polynomial p(n), an alphabet I', and a (k + 1)-ary relation R € P such that for all
XE O,

x€A iff @Ay)(Vy)@ys)... Q)[R Y,y oyl

where the quantifiers alternate (so Q. is 3 (V) if k is odd (even)), and y,, ..., y. range
over all words in I'" of length not exceeding p(|x|).
Similarly, A € II{ iff for all x,

x€A f (Yy)@y)(Vys).. . (Quy) [R(x y1, y2, .0,)],
(so Qi is V (3) if k is odd (even)).

See [27] for a proof of Theorem 3.1.

The polynomial-time hierarchy 7

As mentioned above, we have not been able to prove proper inclusion between
successive classes of the P-hierarchy. However, proper inclusion between some
pair of successive classes implies 2 # A® as the following shows.

Theorem 3.2. Assume 3§ = II; for some k = 1. Then X0=I1?= 3% for all j = k.

Proof. Assume X% = II% for some k = 1. The proof is by induction on j. The basis
J = k is immediate. Assume for induction that 37, = [T?_, = 3¢ for some j > k. We
show that 37C 3f and thus 37= 237 Let A € 3% The following is an easy
consequence of Theorem 3.1: There is a 2-ary relation R € II?_, and a polynomial p
such that for all words x,

x€A iff @y)[lyl=<p(lx]) and R(x,y)].

By induction, we have R € 3% Now A € 3% because, for k =1, 3% is closed under
the operation of polynomial-bounded existential quantification over variables of
relations [27, Proposition 2]. This establishes 3?= X%, thus also I1?= [T} by
definition. [J

Corollary 3.3. (i) If 35# 3% for some k =1, then P # NP.
(ii) If {X%: k =0} contains infinitely many distinct classes, then 3¢ # 3%, for all
k =0.

An interesting open question is whether ?# &% implies 32# 3%, for all k.
Theorem 3.2 does not contradict the possibility that ? # AP but the ?-hierarchy
contains only a finite number of distinct classes.

Regarding these questions, it is important to note the work of Baker et al. [4].
Following a suggestion of Meyer, they consider the 2-hierarchy “relativized” to
arbitrary sets. If X is a set of words, they define

PX= 8% = P(X), SiX=NP (PN, PX=co-NP (34,

For each X, Theorem 3.2 holds for the % -hierarchy relativized to X. The relativized
P -hierarchy may extend either zero levels, exactly one level, or at least two levels
above 3§~ depending on which X is chosen [4]; that is, there exist recursive sets
A, B and C such that

Tph=3pt SEPANPP=IIPT, NpC# SRCA 3RS
However, Baker et al. [4] leave open the following question: Is there a set X such

that 3¢X# 32X for all k =07

Remark. There is a natural correspondence between P and the sets of finite
structures of formulas written in second-order predicate calculus. This extends the
correspondence shown by Fagin [9] between NP and generalized spectra. For

8 L.J. Stockmeyer

k =1, define an open second-order k-formula to be a formula o written in
second-order predicate calculus such that ¢ is in prenex normal form with all
second-order quantifiers preceding all first-order quantifiers, o has k — 1 alterna-
tions of second-order quantifiers with leading quantifier existential, and o contains
at least one free predicate variable and contains no free first-order variable. For
k =1, let GS, be the set of &f such that, for some open second-order k-formula o,
& is the set of finite structures in which o is true. Fagin [9] describes an encoding E
of sets of finite structures to languages, and proves that & € GS, iff E(H)E NP.
Combining this result and Theorem 3.1, it is easy to show that, for each k, of € GS,
iff E(A)€ 2% It is also true that, for each k =1, there is an & € GS, such that
E(sf)is log-complete in 3%. In particular, it then follows that, for each k, 3% # 3%,
iff GS.# GSi.i.

We close this section by noting the following upper bound on the complexity of
sets in the % -hierarchy.

Theorem 3.4. P# C ?-SPACE.

Proof. As Baker et al. [4] point out, NP (?-SPACE) = ?-SPACE is an immediate
consequence of the result of Savitch [19] that NSPACE(S(n))C
DSPACE((S(n))*). It then follows by induction on k that 37C 2?-SPACE for all
k. O

It is not known if the containment of Theorem 3.4 is proper. However, Wrathall
[27] observes that if P = P-SPACE then the #-hierarchy is finite.

4. Complete sets

A variety of well-known combinatorial optimization problems and decision
problems from automata theory and logic have been classified as being complete in
certain complexity classes such as ¥% and ?-SPACE with respect to efficient
transforms such as =,, [6, 8, 13, 15, 24, 25]. Even though it is not known whether
Ir#30.,, we feel that the %-hierarchy will prove technically useful in the
classification of other problems. For example, as mentioned in the introduction, the
minimization problem for Boolean formulas (viewed as a recognition problem)
belongs to 3%, but is not known to belong to /P U co-N%P. Possibly the minimiza-
tion problem is log-complete in 3%, and this remains an intriguing open question.
The main purpose of this section is to exhibit a simply defined word problem, the
inequivalence problem for integer expressions (defined below), which is log-
complete in 3%

First, we note that for each k there is a set which is log-complete in 3%. Viewing

The polynomial-time hierarchy 9

the satisfiability problem for Boolean formulas as a question involving existential
quantification over the variables in formulas, these complete sets are the extensions
of the satisfiability problem to alternating quantifiers.

We are concerned with Boolean formulas involving doubly subscripted variable
symbols x;; for i, j = 1, constant symbols 0 and 1, operation symbols ~, A, v, —, <>,
and parentheses. Assume these symbols are distinct.

Definition. (i) 0, 1, and x; for i,j =1 are Boolean formulas.

(ii) If F and G are Boolean formulas, and ¢ €{A,v,—, <}, then ~ F and
(FoG) are Boolean formulas.

(iii) Nothing is a Boolean formula unless implied by (i) or (ii).

If V is a set of variable symbols, a V-assignment is a mapping from V to {0, 1}. If
F is a Boolean formula containing the set V of variable symbols, then F defines, in
the obvious way, a function mapping V-assignments to {0,1}; ~, A, v, — and &
are interpreted as the Boolean operations complementation, conjunction, disjunc-
tion, implication and equivalence, respectively; and 0 and 1 are interpreted as
Boolean constants. A literal is either x or ~ x where x denotes a variable symbol.
A Boolean formula F is in conjunctive normal form ifft F is a conjunction of
disjunctions of literals. F is in disjunctive normal form iff F is a disjunction of
conjunctions of literals. Let CNF (DNF) denote the set of Boolean formulas in
conjunctive (disjunctive) normal form. Let 3CNF denote the set of F € CNF such
that Fis Cia Con ... A C,, where, for 1 <i < m, G is a disjunction of at most three
literals. 3DNF is defined dually. (When writing formulas within the text, parenth-
eses are deleted when not needed to determine the precedence of operations.) In
describing Boolean formulas, we write X; for the sequence of variable symbols
Xi1, Xiz, Xi3, ..., 3X; for Ax;,Axi2.. . ; etc. These abbreviations do not appear in the
Boolean formulas themselves. We use the notation F(X,..., Xi), G(X,, ..., Xi),
etc. to denote a Boolean formula containing no variable symbol x; with { > k.

Boolean formulas are encoded as words over a finite alphabet by encoding
variable symbols as words over the alphabet {x,0,1, # }; x; is encoded as xw, # o,
where w;, w; € {0, 1}” are the binary representations of i and j. Where no confusion
can arise, we shall identify a Boolean formula with its encoding, and with the
Boolean function it defines. The following definition of By as a set of words should
thus be clear.

Definition. Let k = 1.
B, ={F(X.,..., Xx): F(X,,...,X\) is a Boolean formula, and

Note that B, is the set of satisfiable formulas.

10 L.J. Stockmeyer

Theorem 4.1. Let k = 1.
(1) Bu is log-complete in X3,
(2) Ifkisodd (even), then B, N 3CNF (resp., B, N 3DNF) is log-complete in 3.

Theorem 4.1 was first noted in [17, 25]. A proof of part (1), by a direct
“arithmetization” of query machines, is given in [17]. Wrathall [27] gives a simpler
proof of Theorem 4.1, using Theorem 3.1.

One value of the sets By is to serve as starting points for further transformations.
As the work of Karp [13] demonstrates, sets which are known to be complete in a
class often facilitate proofs that other sets are complete in that class. For example,
to show that 32 <,, A for some set A, it suffices to show B,NDNF <, A (since
< 18 transitive). Using B, N DNF in this way, we prove that the inequivalence
problem for integer expressions is log-complete in X%. Even though this decision
problem may seem somewhat contrived, it does serve to illustrate how one might so
utilize B, N DNF. Possibly this will suggest further examples of problems which are
complete in X% or IT} for some k = 2.

Integer expressions are syntactically similar to the familiar regular expressions of
finite automata theory [2], but they define sets of nonnegative integers rather than
sets of words.

Definition. If z €N, let bin(z) €{0,1}" denote the binary representation of z.

We define the class of integer expressions and simultaneously define the map L
which maps integer expressions to subsets of N.

(i) If z EN, then bin(z) is an integer expression, and L (bin(z)) = {z}.

(ii) If E and F are integer expressions, then (E U F) and (E + F) are integer
expressions, and

L((E UF))=L(E)U L(F),
L(E+F))={m+n: me&€L(E) and n € L(F)}.
Let N-INEQ = {(E, F): E and F are integer expressions and L(E)# L(F)}.

Theorem 4.2. N-INEQ is log-complete in 3.

Proof. (1) N-INEQ € X% Given z €N and integer expression E, we first define a
“proof” that z € L (E) recursively as follows: bin (z) is a proof of (z, bin(z)); if P, is
a proof of (z,, E,), P, is a proof of (z,, E>), and z = z, + z,, then (P, + P,) is a proof
of (z,(E, + E)); if P, is a proof of (z, E), then P, is a proof of (z, (E U F)) and of
(z,(F U E)) for any integer expression F. Let Q be the relation Q(x, E, P) iff
x = bin(z) for some z €N and P is a proof of (z, E). It is not hard to see that
oce

By induction on the structure of E, one verifies that: (i) if z € L(E) then

The polynomial-time hierarchy 11

|bin(z)| < |E|; (i) if P is a proof of (z, E), then |P|<|E|. Therefore, for all
integer expressions E, and E,,

(E,, E;))EN-INEQ iff
(Bx)[(E]Pl) [O(x7 El’ Pl)](_) - (3P2)[O('x’ EZ’ PZ)”’

where quantifiers range over words of length < |(E,, E;)|. Standard manipulation
of quantifiers and Theorem 3.1 now imply that N-INEQ € 3.

(2) 22 <1y N-INEQ. By Theorem 4.1, it suffices to show that B, N DNF <, N-
INEQ via some transformation g. We describe a g which accomplishes this.

Let G be a given input. If G&Z DNF or G contains a variable x; with i > 2, then
G & BN DNF, and we can take g(G) = (0,0). (The test that G is a well-formed
Boolean formula can be performed within space log (] G |) by well-known methods;
see [3].)

Thus we may assume G = G(X,, X,) € DNF. For simplicity (and without loss of
generality) assume that, for i =1,2 and j > 1, if G contains x; then G contains
x; ;1. Let n = max{j: x,; or x5 appears in G}. Say G = C,v C,v ... v C,., where,
for 1<i<m, C is a conjunction of literals. We may also assume that, for all i
and k, C, does not contain both x; and ~ x;, and C. does not contain a constant
symbol 0 or 1. If & is a literal, define [€ Ci] to be 1 if « appears in C.; and
[@ € Gi]tobe 0 if @ does not appear in Ci. For each literal a define I(a) € N to be

I(a) = 2 [01 (S Ck] . bk’ Where b — 22+logn.
k=1

Let a = 2{, b*, and for 1<k <m let F, be the integer expression

((bin (b*) U 0)+ (bin (b*) U 0) + ... + (bin (b*) U D)), -

where the term (bin(b*) U 0) appears 2n — 1 times. (Unnecessary parentheses have
been omitted.)
Finally define integer expressions

E = (2 (bin (a — I(x1;)) Ubin (@ — I(~ x,,))) + bin (na)),

i=1

E:= (2 (bin(1(x)) Ubin(I(~ x;,)) + > F)

Now note four facts about E; and E.. In (a)-(d) below. corresponding to each
y<b™*'let a,, a,...,a. denote the unique integers such that y = 2., a.b* and
0=<a.<b Fori=1,2and1=<k <m, we say that an X;-assignment kills C, iff for
some j either (x; appears in C, and x; is assigned value 0) or (~ x; appears in C,
and x; is assigned value 1).

(a) For each y€ L(E,), n<a,<2n for 1=k <m; and there is an X.-
assignment such that, for 1 < k < m, a. = 2n iff the assignment does not kill C,.

12 L.J. Stockmeyer

(b) For each X,-assignment there is a y € L(E,) such that, for 1<k = m,
a. = 2n iff the assignment does not kill C..

(c) For each y € L(E;) there is an X,-assignment such that, for 1 <k s m, if
ax = 2n then the assignment kills C..

(d) Let A, be an X,-assignment and y be an integer such that n < a < 2n, and
ar = 2n implies that A, kills G, for 1<k < m. Then y € L(E>).

For example, to prove (a), choose any ““parse” of E, as a sum of integers such
that the sum equals y. Assign x,; = 0 if the integer a — I(x;;) is chosen in the parse,
or assign x;; = 1 if the integer a — I(~ x;;) is chosen in the parse. The proofs of (b),
(c) and (d) are similar, and are left to the reader.

We now claim that

(VX)AX)[G(X,, X:)=0] iff L(E\)C L(Ey).

To verify this, first note that for any (X, U X,)-assignment, G (X, X;) = 0 iff for all
k, 1 < k < m, the assignment kills C,. Now the “only if”’ direction of the claim is
easily proved from (a) and (d), while “if”” follows from (b) and (c).

Therefore, we finally have

G(X1, X2) € B, (VX)) (3X,) [G(X,, X2) = 0]
< L(E))C L(E>)
< ((E\ U E,), E,) € N-INEQ.

The required transformation g maps G (X, X;) to ((E, U E,), E,). The reader can
verify that g € logspace, which completes the proof. (Cf. the proof of Lemma 6.3
where we argue that a certain transformation belongs to logspace. Essentially the
same argument applies to this g.) [J

5. The w-jump of the % -hierarchy

Define
B,= U B.
k=1

Since By is complete in 3%, B, is the natural analog of #“ in the arithmetical
hierarchy [18]. The next result reveals an interesting relationship between the
P-hierarchy and polynomial space.

Theorem 5.1. B, and B, N 3CNF are log-complete in P-SPACE.
Theorem 5.1 is established by Lemmas 5.2, 6.3 and 6.4 proved below.

Apart from its own interest, Theorem 5.1 is useful in showing that other sets are
complete in #-SPACE. Since =,, is transitive, to show that ?-SPACE <, A, it

The polynomial-time hierarchy 13

suffices to show that B, <, A. Thus one can avoid carrying out for each such A
the “arithmetization” of Turing machines by which we here show that -
SPACE =, B.. The sets B, and B, N 3CNF have already proven useful in two
such applications: Ladner {15] has shown that the validity problem for certain
systems of modal logic is log-complete in #?-SPACE; and Even and Tarjan [8] have
shown that the set of graphs for which the first player has a winning strategy in a
“Shannon switching game on vertices” is log-complete in ?-SPACE.

It is convenient to prove ?-SPACE <,,, B, by modifications to the proof, given
in Section 6, that ?-SPACE is transformable to the first order theory of equality
(Lemma 6.3). For the present, we only observe the following.

Lemma 5.2. B, € DSPACE(n).

Proof (sketch). Linear space is obviously sufficient to determine if a given input is
(the encoding of) a well-formed Boolean formula. Assume then that F(X,, ..., X,),
some k = 1, is the input of length n. The deterministic Turing machine M checks if
AX\VX,. . QuXk [F(X,,..., Xi)=1] simply by cycling, in the proper order,
through all possible assignments of Boolean values to the variables of F. M
operates within space proportional to the space n sufficient to record the
assignment. The classical constant factor “speedup” result [23, cf. 11] then gives the
conclusion. [

6. The first order theory of equality

The problem of accepting B,, is computationally very similar to the problem of
deeiding validity in the first order theory of equality. (In fact, as implied by the
results below, these two problems are equivalent with respect to <,,,.)

Let £ico denote the set of formulas written in the first order predicate calculus
using only the binary relational symbol =, together with the usual logical
connectives A, v, ~, — and <, quantifiers 3 and V, variables, and parentheses.
We use (multiply) subscripted letters u, v, w,y, z to denote variables. Similar to
Section 4, these variables are coded into words over the alphabet
{u,0,w,y,2,0,1, #}; u,, becoming u 10 # 110, etc. Let Le.ro denote the for-
mulas in & o which are in prenex normal form. A sentence is a formula containing
no free variables. Let IEQ (PrlEQ) denote the set of sentences in ¥ .q (resp.,
Zeaeo) which are valid in [i.e., true in every model for] the theory of equality.
Obviously, a model for the theory of equality is completely specified by the
cardinality of its domain. See, for example, [1, 20] for further discussion of these
terms.

The main result of this section is the following.

Theorem 6.1. 1EQ and PrlEQ are log-complete in P-SPACE.

14 L.J. Stockmeyer

The proof is immediate from Lemmas 6.2 and 6.3 to follow.

It is well-known that 1EQ is decidable because a sentence ¢ in £ zo containing
m quantifiers belongs to 1EQ iff o is true in the models of cardinalities 1 through m
(see [1]). (We note that even though this fact is stated in [1] only for prenex
sentences, the proof applies to arbitrary sentences as well.) This fact is used in the
following.

Lemma 6.2. (1) IEQ € DSPACE(nlogn);
(2). PrtEQ € DSPACE((n).

Proof. (1) Given a sentence o € £ 50 such that ¢ contains m quantifiers, the outer
loop of the Turing machine M cycles through the integers 1,2,3,..., m. For a given
integer k < m, M decides whether o is true in the model of cardinality k. This is
done by a straightforward recursive procedure, the details of which are left to the
reader. For example, similar to Lemma 5.2, quantifiers (e.g., (3u)F) are handled by
recursively determining the truth of F for each possible assignment of domain
element to the variable u. M can be designed to use space proportional to the space
sufficient to record an assignment of domain elements to the variables of o. By
encoding domain elements as binary words of length O(logm), this space is
O(m logm). Certainly m < n, where n is the length of o, which, together with
“speedup” [23], proves (1).

(2) M also accepts PrlEQ. However, if o is in prenex normal form with m
quantifiers, we can assume without loss of generality that distinct variables occur in
the prefix of o. Due to the combined lengths of the encodings of these variables, we
have n = 2/, log(ci), for some constant ¢ >0, which implies m = O (n/logn). The
space O(mlogm) used by M now becomes O(n). []

We now turn to the main result of this section, that ?-SPACE =<, PrlEQ
(Lemma 6.3). Within the proof of this result, it is convenient to assume that Turing
machines are of a particular simple form described next. A simple Turing machine
(STM) has one head and one tape. The single tape is one-way infinite to the right.
An STM is given input x by writing x left-justified on the otherwise blank tape
with the head scanning the leftmost tape square, and the control placed in a unique
designated initial state. An STM can accept an input only by entering a unique
designated accepting state with the tape entirely blank and the head scanning the
leftmost tape square. It is convenient to assume that whenever this unique
accepting configuration is entered, the STM continues “‘running” in this configura-
tion.

The proof of Lemma 6.3 requires a means of formally describing the computa-
tions of STM’s. If M is an STM with states Q and tape alphabet I, then an
instantaneous description (i.d.) of M is any word in I"*- Q - I'*. Informally, if & is
an i.d. of M, say 8 = ygsz, where y,z€I'*, s€l and q € Q, we treat é as

The polynomial-time hierarchy 15

describing the symbols on the tape squares in an interval around the head, with g
being the state of the control, and g being positioned in § immediately to the left of
the symbol s being scanned. We associate with M a function

Nexty: *-Q - I'* =221,

(2° denotes the set of subsets of set S.) Nexty (8) is the set of i.d.’s 8’ such that
|8’ = |8 and & can reach &' in one step of M. (The definition of Next,, can easily
be made formal; see [24].) Also define Nexty(8,0)={8}, and Nexty(8,i+1)=
Nexty (Nexta (8, i) for i €N.

The following technical lemma formalizes the assertion that one can determine
whether 8, € Nexty(8,) by making “local checks” within 8, and 8,. This should be
obvious since, in one step, only a few symbols around the state symbol can possibly
change.

Lemma 6.3.1 (see [24]). Let M be a nondeterministic STM with states Q and tape
alphabet I'. Assume $& Q UT. Let 3 = Q UT' U{$}. There is a set Xu C 3° with
the following properties.

(1) Let 6, be any i.d. of M, let k = |8,|, and write $6,$ = 8,.081.1...81.c81 x+1
where 8, ;€ X for 0<j<k +1. Let $6:8 = 8,082.1...82 485 x+1 where 8, ;, € 3 for
Osjs<k+1. Then 8,€ Nexty(8)) iff 61,;-161,;81,41642,-18,8,,.1€ Xu for all
hl=sj<k

(2) If 010203010503 € Xy, then o, =$ iff oi=§ fori=1,2,3.

See [24] for a proof of Lemma 6.3.1 and further discussion of STM’s. It is
convenient to summarize our conventions concerning STM’s in the following
lemma.

Lemma 6.3.2. Let A € NSPACE(S(n)). There is a nondeterministic STM M and
an a €N such that for all x,

xEA iff q #° € Nexty(qox #°7"2%),

where n = |x|, s = max(S(n),n + 1), # denotes the blank tape symbol, and g, (q,)
denotes the unique initial (accepting) state of M.

Proof (sketch). One readily verifies that there is a nondeterministic STM M which
accepts A within space max(S(n), n + 1). Choose the constant g so that, for all [, 2*
bounds the number of i.d.’s of M of length [+ 1. The conclusion follows since, for
each accepted input x, some computation of M on x must enter q, #° before
looping. [

To obtain Corollary 6.6 below, we must know not only that each A in ?-SPACE
is transformable to Prl1EQ via some f € logspace, but also how | f(x)] grows as a
function of | x |. The following definitions are therefore useful.

16 L.J. Stockmeyer

Definition. Let f:®"— A" and L:N—N. f is length L(n) bounded iff |f(x)| <=
L(jx]|) for all x € @,

Let B be a set and € be a class of sets. € <, B via length order L(n) iff for each
A € € there is a constant ¢ and an f € logspace such that A <, B via f, and f is
length ¢ - L(r) bounded.

Lemma 6.3. Let d be an integer, d = 1.
(1) NSPACE (n*) <, Pr1EQ via length order n**log n.
(2) NSPACE (n*) <., B., via length order n**logn.

Proof. (1) Let A € NSPACE(n)and A C @ for an alphabet @. Foreach x € @
we describe a sentence F, € Lo such that x € A iff F. € PrlEQ. Letting f be
the function mapping x to F. for all x, we shall see f € logspace and f is length
cn’®logn bounded for some constant ¢, thus proving part (1) of the lemma.

Let M be the nondeterministic STM of Lemma 6.3.2. Let Q, I" and 3 be as in
Lemma 6.3.1 for this M. Let x € 0", n = [x]|, and s = max(n®, n +1).

The sentence F, involves variables uy 1 o, Uk 1o» Wiion y fOr0s k <, 0s[<s+2
and o € 3, where the integer ¢ is specified below. Let U, abbreviate {u, ,.:
o€ 2,0=<[<s+2}. Similarly, 3U, abbreviates the sequence {Ju. ,,}. The nota-
tions YUy, Vi, 3W,, etc. are analogous.

A fixed interpretation of a sequence of variables (i.e., U,, Vi, or W, forsome k)
encodes an i.d. of M in a way very similar to {6, cf. 2]. Let D be some domain, and
let Ui, y'ED forc €3 and 0<]<s+2 and k fixed. Let Uj denote {ut ,.}.
Let & be an i.d. of M with |§]| = s + 1. (By Lemma 6.3.2, it is sufficient to consider
only i.d.’s of length s + 1.) We say that (UL, y") encodes & iff (i) for each [there is
exactly one o € X such that ui,,=y' (let o; denote this unique element of 3);
and (ii) oy oy 0. .. G2 = $68.

We construct, for 0= k < ¢, a formula F, (U, Vi, y) with free variables U,, Vi
and y. Informally, F, asserts that the i.d. encoded by (V., y) follows, in 2* steps of
M, from the i.d. encoded by (Ui, y). More formally, F, satisfies the following
property Py : Let D be a domain of cardinality =2. Let (Uj, y') encode ani.d. § as
above. Let vi,,ED for 0sl=s5+2 and o €3; let Vi denote {vi,.}. Then
F. (Ui, Vi, y") is true over D iff (Vi,y') encodes an i.d. §' € Nexty(8,2%). (Here
we let Fi (Ui, Vi, y') denote an instance of F,, with uj ,, replacing occurrences of
Wt o Vkoo replacing v, etc.)

The formulas Fi are constructed inductively. First let

EU({k,I,0) denote <(uk,,,q=y)A A ~(uk,l.1:y)>;
THEo

EV{k Il o) denote <(vk,1,,,=y)/\ A N(DHT:)’))-

TEOT

The polynomial-time hierarchy 17

Let Xu be the set of Lemma 6.3.1. Let o denote o,0,0:0 005 Now
Fo(Us, Vo, Y) is

s+1
A v (EUQ,I=1,0pA EUQ, L o)A EUQO,1+1,03)

=1 oEXpm

NEV{0,1=1,0)A EV{0, Lo A EV{0,1+1,a%).

By Lemma 6.3.1, it is clear that F, satisfies property P,.

We now write F, ., using F, as a subformula. The basic idea, used also by Savitch
[19], is that &8’ &€ Nexty(8,2*"") iff there exists an i.d. w such that both u €
Nextw(8,2) and §' € Nexty (u,2*). Thus F.\(Ui+1, Vier, y) could be written in the
obvious way as

(3 Wk+l)(Fk(Uk+1, Wi,)’)/\ Fk(Wk 15 Ve,)’))7 (1)

where Fi (Ui, Wiy, y) is identical to F (Ui, Vi, y) with wi., ., replacing v, .,
etc. Clearly, the formula (1) satisfies property Pi., if F, satisfies property P..
However, to obtain the desired bound on the length of F,, it is essential that F, .,
contain only one occurrence of F,. Therefore we write F,., as follows. Let

s+2

“Ux = Wi.,” abbreviate A A (Uiio= Wiirio);

1=0 vEX
and similarly for “U, = U,.,”, etc. Fi.i(Uisy, Visy, y) is the formula
AW) (VUY NV V) ((Ue = Ui a Vi = Wil
\ (Uk = Wk+| A Vk - vkn))_)Fk(Uk» vk7)’))

Fi.1, so written, is equivalent to (1) above. This completes the inductive
construction of F,, ..., F,.

Now let a be the constant of Lemma 6.3.2 and let t = as, so that M accepts x iff
g, #° € Nextm (gox #°7",2°).

Now construct a formula Init, (U, y) which asserts that (U, y) encodes the initial
i.d. gox #°7", and construct Acc(V, y) to assert that (V,, y) encodes the accepting
id. g, #° Let x =x1x2x3... X,

Init, (U, y) is the formula

n+1 s+1
EUO.$)A EUL L, goyn A EUGLx,.0n A EULL #Yn EU(Ls +2,8).
i1=2 I=nt2
Acc(V,y) is written similarly.
Let F} be
@Ay)AU)@ V) (it (U, y) A Ace(Viy)a E(U, V., y).

So M accepts x iff F% is true in all models of cardinality =2. Finally, if F. is
Vu)(Vo)(u=v)v F,, then x € A iff F, is valid.

18 L.J. Stockmeyer

Let F, be the prenex form formula equivalent to F) obtained by standard
manipulation of quantifiers. For example, replace occurrences of (G — (3z)H) by
(32)(G— H), and (G—(Vz)H) by (Vz)(G— H), where G and H denote
subformulas of F, and z denotes a variable. Note that each variable occurring in F;
is bound by exactly one quantifier; and ~,a,v and — are the only logical
connectives appearing in F.. Therefore |F.| = |F;| (viewing these formulas as
words over the alphabet of £ xo).

We now bound the length of F.. First note that, since [<s+2<n“+3 and
k <t<a(n*+1), each variable occurring in F, is encoded as a word of length
O(logn). The following relations are now obvious by inspection. (Of course, the
abbreviations AjZi etc. must be fully expanded when bounding the lengths of these
formulas.)

|Fo| = ¢’'nlogn,
Foa|<s|FEJ]+c¢n?logn for 0sk <y
g

= |Fi < |F|l+c'n®logn,
F F)| <|F, 'n?log

where ¢’ is a constant depending on M and d, but not on n. These relations imply
| F.| < cn*log n for some constant ¢ and all x, where n = |x|. If f: ©" — Lpapo is
defined by f(x)=F, f is length cn** logn bounded.

It remains only to observe that f € logspace. The verification of this fact is not
difficult; we only sketch the outline, leaving the details to the reader. First recall
that all occurrences of k and ! in the descriptions of F,,..., F, denote integers
whose binary representations are of length O(log n). It can be seen that, given x, a
Turing machine can produce the formula F, while using only space O(logn). In
fact, our description of F, above can serve as a finite ““program” for this machine.
Now thinking of F, and F as words over the alphabet of £ zo, write Fi., as w Fim
for 0 < k < t, and write F; as w.F,7, where w. and 7, are the appropriate words over
this alphabet (cf. the descriptions of F,., and F; above). As for F,,, w, and 7, can be
produced within space O(logn), given x and the binary representation of k. Since
also t is of “length” O(logn), and

| p—
Fi=ww_ ...0i0oFyt071...7,

F can be produced using space O(logn). The transformation mapping F; to F;
belongs to logspace as the reader can verify. Thus f € logspace because logspace is
closed under composition [12, 25]. This completes the proof of part (1).

(2) Let A be as in part (1). For each x, one can construct, by minor modifications
to F,, a Boolean formula E, such that x € A iff E, € B,. First replace each
occurrence of an atomic formula (4, .= y) (resp., (Vi1o= ¥), (Wro = y)}in F, by
the variable symbol u, ., (resp., v«..o Wiio). The remaining occurrences of the
equality symbol (e.g., in the abbreviations “U. = W,.,” etc. used in describing
Fi...) are replaced by the logical connective <. It should be evident how to rename

The polynomial-time hierarchy 19

the variable symbols as the doubly subscripted variables required by our definition
of Boolean formulas; and the naming is done such that E, is the matrix (i.e., the
non-prefix part) of the resulting formula. That is, the variables (U, U V, U W,) are
renamed as variables in the set X, (U,_; U V,_;) are renamed as X;;, and W,_; as
Xy for 1= j =<t If g(x) = E,, one verifies just as in part (1) that g € logspace and
g is length cn*@logn bounded. O

Lemmas 6.2 and 6.3(1) prove Theorem 6.1. Lemmas 5.2 and 6.3(2) prove that B,,
is log-complete in #-SPACE. The following Lemma 6.4 completes the proof of
Theorem S5.1.

Lemma 6.4. (1) There is a transformation f and a ¢ €N such that B, <, B, N
3CNF via f, and f is length cn bounded.
(2) For each d =1, NSPACE (n?) <\, B, N 3CNF via length order n**logn.

Proof. (1) The transformation f rests on a technique of Tseitin [26, cf. 5] for
converting an arbitrary Boolean formula to a formula in 3CNF while preserving
satisflability. Let G(X,,...,Xk) be a given Boolean formula for some k =1.
Tseitin’s technique yields a Boolean formula F(X,..., Xi, Xi.1) belonging to
3CNF such that for all assignments of Boolean values to the variables X, U ... U
Xk,

G(Xl,...,Xk):l lﬂ (BXk+l)[F(X1,'-"XkanJrl):1]'

If f is the transformation mapping G to F, one verifies by inspection of [26, 5] that
f € logspace and f is length cn bounded for some constant c. If k is even, f is the
required transformation. If k is odd, construct F as above except rename the
variables in Xy, as variables in X,.,.

(2) This is immediate from part (1) of this lemma, Lemma 6.3(2), and closure of
logspace under composition. []

It is now straightforward to obtain corollaries concerning the complexity of the
sets 1TEQ and B.. The following lemma is needed.

Lemma 6.5 (Jones [12], Meyer [25]). Let T(n) and S(n) be monotone nondecreasing
functions from N to N. Say A <., B via f, where f is length L(n) bounded.

a) Be{ggiﬁgg}(sm» implies AE{ggiﬁg}é}(S(L(n)ﬂ-logn).

@ Be{Drime T impies A€ {STMEL (L () + p(a)

for some polynomial p(n).

20 L.J. Stockmeyer

Corollary 6.6. Let B be one of the sets 1EQ, PrlEQ, B, or B, N 3CNF.

(1) BE @ iff # = ?-SPACE.

(2) If a nondeterministic Turing machine accepts B within space S(n), then there is
a constant ¢ >0 such that S(n)> c(n/logn)'” for infinitely many n.

Proof. (1) This is immediate from Theorems 5.1 and 6.1 and Lemma 6.5(2).

(2) Suppose to the contrary that a nondeterministic Turing machine accepts B
within space S(n), where for all rational ¢ >0, S(n)< c(n/logn)"” for all but
finitely many n. Let S'(n) = max{S(m): m < n}. Then B € NSPACE(S§'(n)) and
S'(n) is nondecreasing.

From the hierarchy theorem for nondeterministic space, proved by Seiferas et al.
[21, 22], we have the following fact: There is a set A € NSPACE (n) such that for
all Si(n),

lim Si(n +1)/n =0 implies A Z NSPACE(S.(n)).)

Now since A € NSPACE (n), Lemma 6.3 or 6.4 implies A =,,, B via f, where f is
length bn’logn bounded for some constant b>0. Therefore
A €ENSPACE(S'(bn’logn)+logn) by Lemma 6.5(1). However, choosing S,(n) =
S’(bn*logn) +logn now contradicts the condition (2). [J

As a final remark, we note that this lower bound on space complexity can be
improved in the case of 1EQ and Prl1EQ. In the proof of Lemma 6.3(1), the
particular method of encoding i.d.’s as sequences of variables was chosen to
simplify the argument and to be able to obtain part (2) of the lemma by
modifications to part (1). However, Meyer has suggested a more efficient encoding
which yields a slightly stronger lower bound.

Corollary 6.7. (1) NSPACE (n?) <, PriEQ via length order n*“.
(2) If a nondeterministic Turing machine accepts Pr1EQ within space S(n), then
S(n)>cn'? for some ¢ >0 and infinitely many n.

Proof. (1) The construction is very similar to that of Lemma 6.3(1). We only outline
the differences. Notation is as in Lemma 6.3(1). Break the i.d. of length (roughly) n*
into blocks of length b, where b is chosen below. An i.d. is thus viewed as a word of
length m = n?/b over the alphabet 3" of cardinality p = r®, where r = card(2)
depends only on the machine M. In place of the variable y, introduce p variables

Yi,..., Y, which are viewed as constants. A sequence of m variables (e.g.
Ui={ui,: 1=s1<m})can now encode ani.d.: u;, =y, iff the /th block of the i.d.
contains the jth symbol of 3°. Also let Y denote {y,,..., ¥,}. Note that variables

are encoded as words of length not exceeding O(logn + logp).
Similar to Lemma 6.3.1, one can check whether 6’ € Nexty, (8) by comparing two

The polynomial-time hierarchy 21

consecutive blocks of & against the corresponding two blocks of §' (assuming
b = 2). Similar to the formula F, in Lemma 6.3(1), the block comparisons can be
expressed in a straightforward way as a formula G4(U|, V5, Y). Note that there are
m places to choose the two consecutive blocks, and for each choice there are p*
possible assignments of words in 3* to the relevant four blocks. Therefore G, can
be written so that

|Gol <= c’'mp*(logn +logp) for some constant ¢’.

For 1 = k =1, the formulas G, (U}, Vi, Y) are constructed inductively, just as the F,
are constructed in Lemma 6.3(1). Recalling that a sequence of m variables encodes
an i.d., we have

|G| < |G|+ ¢'m (logn +logp).

Now the formula G, is constructed from G, as before, where 1 = O(n?), so that
x € A iff G, € PrlEQ. Choosing b = [(:d) - log,n], one verifies by calculation that
|G| = cn.

(2) The proof is identical to that of Corollary 6.6(2), using Corollary 6.7(1) in
place of Lemma 6.3(1). [

In comparing the upper bound n on the space complexity of Prl1EQ (Lemma 6.2)
with the lower bound cn'* (Corollary 6.7), one should note that the upper bound
applies to deterministic space while the lower bound applies to nondeterministic
space. Any success in tightening this gap, either by improving the upper bound of
Lemma 6.2(2) or by improving the length bound n** in Corollary 6.7(1), would (by
an application of Lemma 6.5(1)) improve the best presently known relationship
between nondeterministic and deterministic space, proved by Savitch [19], that
NSPACE (n) C DSPACE (n?).

Acknowledgements

The author is grateful to Ronald Fagin, Michael J. Fischer, Albert R. Meyer, and
Arnold L. Rosenberg for helpful discussions and comments concerning this work.

References

[1] W. Ackermann, Solvable Cases of the Decision Problem (North-Holland, Amsterdam, 1954).

[2] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of Computer Algorithms
(Addison-Wesley, Reading, Mass., 1974).)

{3] A.V. Aho and J.D. Ullman, The Theory of Parsing, Translation, and Compiling, Vol. 1: Parsing
(Prentice-Hall, Englewood Cliffs, N.J., 1972).

[4] T. Baker, J. Gill and R. Solovay, Relativizations of the # = 24% question, SIAM J. Comput., 4
(1975) 431-442.

22 L.J. Stockmeyer

[5] M. Bauer, D. Brand, M. Fischer, A. Meyer and M. Paterson, A note on disjunctive form
tautologies, SIGACT News 5§ (April 1973) 17-20.

[6] S.A. Cook, The complexity of theorem proving procedures, Proc. Third Annual ACM Symposium

" on Theory of Computing (1971) 151-158.

[7] S.A. Cook and R.A. Reckhow, Time bounded random access machines, J. Comput. System Sci. 7
(1973) 354-375.

[8] S. Even and R.E. Tarjan, A combinatorial problem which is complete in polynomial space, Proc.
Seventh Annual ACM Symposium on Theory of Computing (1975) 66-71,

[9] R. Fagin, Generalized first-order spectra and polynomial-time recognizable sets, in: R. Karp, ed.,
Complexity of Computation, SIAM-AMS Proc. 7 (1974) 43-73.

[10] M.A. Harrison, Introduction to Switching and Automata Theory (McGraw-Hill, New York, 1965).

[11] J.E. Hopcroft and J.D. Ullman, Formal Languages and their Relation to Automata (Addison-
Wesley, Reading, Mass., 1969).

[12] N.D. Jones, Space-bounded reducibility among combinatorial problems, J. Comput. System Sci. 11
(1975) 68-85.

[13] R.M. Karp, Reducibility among combinatorial problems, in: R.E. Miller and J.W. Thatcher, eds.,
Complexity of Computer Computations (Plenum Press, New York, 1972) 85-104.

{14] D.E. Knuth, Postscript about NP-hard problems, SIGACT News 6 (April 1974) 15-16.

[15] R.E. Ladner, The computational complexity of validity in T, $4, and S5, manuscript, University of
Washington, Seattle, Wash. (1974).

[16] J.C. Lind, Computing in logarithmic space, Tech. Memo. 52, M.L.T., Project MAC, Cambridge,
Mass. (1974).

[17] A.R. Meyer and L.J. Stockmeyer, The equivalence problem for regular expressions with squaring
requires exponential space, Proc. Thirteenth Annual IEEE Symposium on Switching and Automata
Theory (1972) 125-129.

[18] H. Rogers, Jr., Theory of Recursive Functions and Effective Computability (McGraw-Hill, New
York, 1967).

[19] W.J. Savitch, Relationships between nondeterministic and deterministic tape complexities, J.
Comput. System Sci. 4 (1970) 177-192.

[20] J.R. Shoenfield, Mathematical Logic (Addison-Wesley, Reading, Mass., 1967).

[21] J.L Seiferas, Nondeterministic time and space complexity classes, Doctoral Thesis, Report TR-137,
M.1LT., Project MAC, Cambridge, Mass. (1974).

[22] J.1 Seiferas, M.J. Fischer and A.R. Meyer, Refinements of the nondeterministic time and space
hierarchies, Proc. Fourteenth Annual IEEE Symposium on Switching and Automata Theory (1973)
130-137.

[23) R.E. Stearns, J. Hartmanis and P.M. Lewis, Hierarchies of memory limited computations, Sixth
IEEE Symposium on Switching Circuit Theory and Logical Design (1965) 179-190.

[24] L.J. Stockmeyer, The complexity of decision problems in automata theory and logic, Doctoral
Thesis, Report TR-133, M.I.T., Project MAC, Cambridge, Mass. (1974).

[25] L.J. Stockmeyer and A.R. Meyer, Word problems requiring exponential time: preliminary report,
Proc. Fifth Annual ACM Symposium on Theory of Computing (1973) 1-9.

[26] G.S. Tseitin, On the complexity of derivation in propositional calculus, in: A.O. Slisenko, ed.,
Studies in Constructive Mathematics and Mathematical Logic, Part Il (Steklov Math. Institute,
Leningrad, 1968); in Russian; English Transl.: Consultants Bureau, New York, 1970, 115-125.

[27] C. Wrathall, Complete sets and the polynomial hierarchy, Theoret. Comp. Sci. 3 (1976).

