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SIMULATION OF PARALLEL RANDOM ACCESS MACHINES
BY CIRCUITS*

LARRY STOCKMEYER+t AND UZI VISHKIN{

Abstract. A relationship is established between (i) parallel random-access machines that
allow many processors to concurrently read from or write into a common memory including
simultaneous reading or writing into the same memory location (CRCW PRAM), and (ii) combina-
tional logic circuits that contain AND’s, OR’s and NOT’s, with no bound placed on the fan-in of
AND-gates and OR-gates. Parallel time and number of processors for CRCW PRAM'’s are shown to
correspond respectively (and simultaneously) to depth and size for circuits, where the time-depth
correspondence is to within a constant factor and the processors-size correspondence is to within a
polynomial. By applying a recent result of Furst, Saxe and Sipser, we obtain the corollary that
parity, integer multiplication, graph transitive closure and integer sorting cannot be computed in
constant time by a CRCW PRAM with a polynomial number of processors. This is the first
nonconstant lower bound on the parallel time required to solve these problems by a CRCW PRAM
with a polynomial number of processors. We also state and outline the proof of a similar result, due
to W. L. Ruzzo and M. Tompa, that relates time and processor bounds for CRCW PRAM’s to
alternation and space bounds for alternating Turing machines.

Key words. synchronous parallelism, parallel time complexity, circuit complexity, relating
complexity measures, alternating Turing machines

1. Introduction and statements of results. Our main motivation for this work
was the goal of proving nontrivial lower bounds on the time required by a parallel
random-access machine to solve certain problems when the parallel RAM model
allows simultaneous reading from and writing into a common memory. Following
Snir [25], we call this model a CRCW PRAM (for concurrent-read concurrent-
write parallel RAM). A CRCW PRAM has a sequence of RAM’s Ry, Ry, Rj, ...
operating synchronously in parallel. Each individual RAM is similar to a stand-
ard one-processor RAM (cf. [1, Chap. 1]). Each RAM has its own local infinite
random-access memory and has instructions for addition, subtraction, conditional
branches based on the predicates = and <, and reading and writing into its local
memory. (For the moment we assume that there are no multiplication, division
or Boolean instructions.) The RAM’s also have access to a common memory, and
each RAM has instructions for reading from and writing into the common
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memory using one of its local registers to specify the common memory address.
If more than one processor attempts to write into the same location in common
memory at the same time, the lowest numbered processor succeeds. Each
processor R; has an instruction which loads its number i into a specified local
register. All processors have the same program. Without loss of generality we
assume that instructions are of the following forms, where M, M, M3, ... denote
local memory registers, and res (result), opl and op2 (operand 1 and 2) are
positive integers.

M,.s <« constant

M .s + processor number

Mies « opl

Mies « Myp, @Mop2a @ e {+,-}

Myes + *Myp; {local,common} (indirect memory READ)
The contents of the flocal,common} location whose address is in regis-
ter Myp1 is read into local register Mys.

*Myes + Mgp {local,common} (indirect memory WRITE)
The contents of local register Mp; is written into the {local,common}
register whose address is in M.

GOTO label

GOTO label if Myp; @ Mop2, @ € {=, <}

HALT

By convention, zero is the value read by an indirect READ using a nonpositive
address. An indirect WRITE using a nonpositive address has no effect. In
addition to the program, another part of the specification of a particular CRCW
PRAM is a function P(n) from positive integers to positive integers called the
processor bound. An input of size n consists of n binary words, each of length at
most n. A CRCW PRAM is given an input of size n by placing the n words in
the first n locations of common memory, and the first P(n) processors
Ry, ...,Rp(y) are started. Each instruction takes one time unit (uniform cost
criterion). The computation halts when R;,...,Rp(,) have all halted. The
machine operates in time T(n) if it halts within T(n) steps on any input of size n.
Output conventions are not critical, but we assume that when the computation
halts, the output is in an initial contiguous block of common memory of length at
most n locations.

This definition is based largely on the definition of Shiloach and Vishkin
[24]} (simultaneous writing as defined above is defined in [11], [26]); they use
this model to give upper bounds on parallel time for several problems. [24]
contains many references to other papers that give algorithms that can be imple-
mented on a CRCW PRAM or restricted versions of it. The model is essentially
identical to the SIMDAG of Goldschlager [11] and similar to the P-RAM of
Fortune and Wyllie [9]. The P-RAM of [9] allows simultaneous reading but no
simultaneous writing to the same common memory location; we call this model a
CREW PRAM (for concurrent-read exclusive-write). (Whereas [9] and [11]
characterized the power of these models when the number of processors grows
exponentially in n, we are concerned mainly with the case of a polynomially
bounded number of processors.) The model is also mentioned by Schwartz [23];
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although he notes the physical difficulties of implementing large fan-in, he does
state that such models "can play a useful role as theoretical yardsticks for
measuring the limits of parallel computation."

For some models of parallel computation, fan-in considerations lead easily to
a lower bound of 2(logn) on parallel time. For the CREW PRAM, the fan-in
argument is considerably subtle, but Cook and Dwork [7] and Reischuk [19]
succeed in proving 2(log n) lower bounds for problems such as computing the OR
of n bits or the minimum of » numbers. For the CRCW PRAM, arguments based
on bounded fan-in no longer work. For example, Shiloach and Vishkin [24]
show that a CRCW PRAM with O(nz) processors can find the minimum of »n
numbers in constant time. However, Vishkin and Wigderson [28] recently
proved nonconstant lower bounds in the case where the size of the common
memory is limited. In fact, they prove a trade-off of mT? = Q(n) for problems
such as parity of » bits in the CRCW PRAM, where m is the size of the common
memory, T is the parallel time and the input is in a read-only common memory.
This result holds for any number of processors.

To aid our understanding of the power of CRCW PRAM'’s and to facilitate
proofs of lower bounds, a characterization in terms of circuits would seem useful.
There is considerable precedent for circuit characterizations of other computa-
tional models. Pippenger and Fischer [16] show a correspondence between serial
(e.g., Turing machine) time and circuit size, and Borodin [2] shows a correspon-
dence between serial space and circuit depth. Correspondences involving simul-
taneous resource bounds are given by Dymond and Cook [8], Hong [12], Pippen-
ger [15], and Ruzzo [20]. Lev [13] shows a correspondence between time on a
parallel RAM that does not allow simultaneous writing and circuit depth (unlike
our result, the time-depth correspondence involves a logn factor.rather than a
constant factor). Whereas these correspondences use circuits with fan-in bound-
ed by 2, the "correct' circuit analogue for CRCW PRAM’s is the unbounded
fan-in circuit studied by Furst, Saxe and Sipser [10]. These are acyclic circuits
containing AND-gates, OR-gates, and NOT-gates.

More precisely, a circuit is an acyclic directed graph. Each node of the
graph is labeled as either an input node, an AND-gate, an OR-gate, or a NOT-
gate. Input nodes must have fan-in zero, and NOT-gates must have fan-in one.
In addition, certain nodes are designated as output nodes. An assignment of
Boolean values to all input nodes extends, in the obvious way, to Boolean values
associated with all nodes. The size of a circuit is the number of edges (i.e.,
wires). The depth of a circuit is the length of a longest path from some input to
some output.

Our main result is the following:

THEOREM 1. There is a constant ¢ and a function q(P, T, n) bounded above by
a polynomial in P, T, n, such that the following holds. Let R be a CRCW PRAM
with processor bound P(n) that operates in time T(n). There is a constant dgr and,
for each n, a circuit C, of size dg-q(P(n), T(n), n) and depth c-T(n) such that C,
realizes the input-output behavior of R on inputs of size n.

Remarks.

1. g(P,T,n) = O(PTL(L? + PT)) where L = O(n + T + log P).

2. Theorem 1 remains true if the PRAM has instructions for bitwise Boolean
operations and, or, negation, etc., as in vector machines [17].
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3. Theorem 1 is not true if the individual RAM’s have a unit cost multiplica-
tion instruction, since [10] shows that multiplication of n-bit numbers cannot be
realized by a circuit of polynomial size and constant depth. However, Theorem 1
is true (with a different polynomial ¢) if multiplication and division are restricted
to O(log n)-bit numbers.

4. As noted above, concurrent write conflicts into the same common memory
location are resolved by allowing the lowest numbered processor to write. One
can imagine other reasonable alternatives. For example, one can assume that the
program works correctly no matter which processor succeeds in writing, or that
the program is such that whenever more than one processor attempts to write
into the same location concurrently they are all writing the same thing (this latter
assumption is used in [24]). Clearly Theorem 1 holds for CRCW PRAM’s with
either of these alternate assumptions. Theorem 1 holds for the CREW PRAM as
well.

One advantage of circuits is that lower bounds may be easier to prove in the
context of the fixed structure of circuits rather than the dynamic nature of a
program. In this regard, since Furst, Saxe, and Sipser [10] have shown that
polynomial-size and constant-depth circuits cannot compute parity, an immediate
corollary is that a CRCW PRAM with a polynomially-bounded number of
processors cannot compute parity in constant time. The same corollary holds for
any function to which parity is reducible by a polynomial-size constant-depth
circuit. Two examples of such functions from [10] are integer multiplication and
graph transitive closure. Other examples from [5], [6] are determining whether a
graph has a perfect matching and sorting (binary representations of) positive
integers.

CorOLLARY 1. 4 CRCW PRAM with a polynomially-bounded number of
processors that operates in constant time cannot compute parity, multiply integers,
find the transitive closure of a graph, determine whether a graph has a perfect
matching, or sort integers. »

Even given the elegant proof technique of [10], a direct proof of Corollary 1
would probably be very cumbersome.

To provide evidence that we have found the '"correct” circuit analogue of
CRCW PRAM’s we can give a converse to Theorem 1. To avoid the usual
mismatch of uniform programs with nonuniform circuits, we now allow programs
to be nonuniform. In the nonuniform case, each R; can have a different pro-
gram, and the programs can depend on the size of the input. Theorem 1 remains
true for nonuniform CRCW PRAM'’s although the polynomial ¢ now depends
also on the size of the programs, where the size of a program is the number of
bits needed to write the program when constants and indices of registers men-
tioned in the program are written in binary.

TueorReM 2. There are constants ¢y, ¢p and c¢3 such that the following holds.
Let C be a circuit of size S and depth T that computes a function f having n inputs
and at most n outputs. There is a nonuniform CRCW PRAM with ci(S+n)
processors and program size c3log(S+n) that runs in time c3(T+1) and computes f.

Remark. Theorem 2 remains true under the two alternate concurrent write
assumptions for CRCW PRAM’s mentioned in Remark 4 above. However, we
do not see how to prove Theorem 2 for the CREW PRAM. Since [7], [19]
shows that an n-bit OR requires time f2(logn) on a CREW PRAM, Theorem 2
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does not hold literally for the CREW PRAM; however, a time bound of
O(T + log n) would not contradict [7], [19]. We leave circuit characterizations of
the CREW PRAM and EREW PRAM [14], [25] as interesting open questions
(the EREW PRAM allows neither simultaneous reading nor writing to the same
location). If natural circuit characterizations of the CREW PRAM and EREW
PRAM cannot be found, this may strengthen [26], [27] in supporting the CRCW
PRAM model of computation if some kind of simultaneous access to a common
memory is to be allowed.

Before giving the proofs, a few remarks on our view of the significance of
this work should be made. First, a few words should be said about how realistic
is the CRCW PRAM model. Certainly any physically realizable computer using
current technology cannot have completely unbounded fan-in. On the other
hand, fan-in bounded by 2 is probably too restrictive. For example, a realistic
situation could have many processors writing onto a bus; this would be, in effect,
an OR with fan-in equal to the number of processors. Lower bounds on CRCW
PRAM time are very strong since the model is so powerful. Second, it should be
noted that Furst, Saxe, and Sipser were led to unbounded fan-in circuits by the
desire to separate the polynomial-time hierarchy from PSPACE by an oracle.
Starting from a quite different motivation, we were led to exactly the same type
of circuits. This provides further evidence that lower bounds on the depth and
size of unbounded fan-in circuits is an important area of study. Finally, a
common thread running throughout the history of theoretical computer science is
the search for the "right" computational models. One way to support a model or
models as being right is to show equivalence of seemingly different models. This
has occurred in attempts to model "effective computation" (Turing machines,
recursion equations, RAM’s, etc. are equivalent), "serial time" (Turing machine
time, serial RAM time, and circuit size are equivalent to within a polynomial),
and "parallel time" (vector machine time, SIMDAG time, alternating Turing
machine time, and circuit depth are equivalent to within a polynomial). By the
equivalence between CRCW PRAM'’s and circuits stated in Theorems 1 and 2,
these two models support each other as being right models of unbounded fan-in
parallelism.

Another model of parallelism is the alternating Turing machine [4], although
when viewed as a model of parallelism the fan-in is bounded. Ruzzo and Tompa
[22] have shown that if one considers the alternation depth of the alternating
machine, that is, the number of times that the machine switches from an existen-
tial state to a universal state or vice versa along any computation path, then this
complexity measure corresponds quite closely to parallel time in the unbounded
fan-in sense. Specifically, if T(n) and S(n) are suitably well behaved functions
with S(n) > logn and log T(n) < S(n) € T(n), then the class of languages accept-
ed by alternating Turing machines that are simultaneously O(T(n)) alternation
bounded and O(S(n)) space bounded is precisely the class of languages accepted
by CRCW PRAM'’s that are simultaneously O(7T(n)) time bounded and 20(8(m)
processor bounded. An advantage of this result, as compared to Theorems 1 and
2, is that both models are uniform. A disadvantage is that the relationship does
not hold for constant T(n); the parity function is computable by a deterministic
Turing machine in space logn (i.e., T(n) =1 and S(n) =logn), but as noted in
Corollary 1 above, parity is not computable in constant time by a CRCW PRAM



414 LARRY STOCKMEYER AND UZI VISHKIN

with a polynomial number of processors. In §3, we review the definition of
alternating Turing machines, state Ruzzo and Tompa’s result more precisely, and
outline the proof.

2. Proofs of Theorems 1 and 2.

Proof of Theorem 1. We give the proof for a nonuniform CRCW PRAM.
We have made no special attempt to control the size of the constant ¢ or the
polynomial g in the statement of the theorem; we have opted instead for a simple
description. Fix an input size n. Let P, T and § be the processor bound, running
time and program size, respectively. We can take the word length, i.e., the
maximum length of the binary representations of all addresses of registers and
values stored in registers, to be

L = max(n, S,logP) + T + 1.

This is true because initially the length of all words in the memory or the pro-
gram is max(n, S, log P), and each instruction can at most double the magnitude
of a value (i.e., add one to its length). One extra bit is added to L to allow for
negative numbers. So that addition and subtraction can be treated uniformly,
arithmetic is done modulo 2L*! and a negative number -z is stored as
(2L+1—z) mod 2L +1.

In our circuit simulation we represent local and common memories by sets of
triples

(a[(P9k9t)9 V[(P,k,t), W[(p,k,t)) and (ac(kvt), Vc(k,t), Wc(k,t))

where a;(p,k,1), v;(p.k,t), a(k,t) and v.(k,t) are L-bit binary words, and wy(p.k,t)
and w.(k,r) are single bits. If wy(p,k,t) = 1, the triple (ap(p,k,0),vp(p.k,),wp(p,K,1))
means that the register with address a,(p,k,?) in the local memory of processor p
contains the word v,(p,k,t) at step t. If w)(p,k,t) =0, the triple means nothing.
The triples (a.(k,t),v.(k,t),w.(k,t)) mean the same for common memory. If for
some ag, p and ¢ there is no k such that w,(p,k,r) =1 and a,(p,k,t) = ap, then
local register ag of processor p contains zero at step ¢, and similarly for common
memory triples. Since a processor can write into at most one local or common
register at each step, we can take 1 < k < T for local triples and 1 < k < n+PT
for common triples. Let s(p) be the number of instructions in the program of
processor p (certainly s(p) < §). The circuit simulation ‘also computes, for each
processor p, each step f, and each j with 1 < j < s(p), a bit ic(p, j,#) (instruction
counter) which is 1 iff processor p should execute the jth instruction of its
program at step ¢. Let xy,..., x, be the input words stored in the first n locations
of common memory, each padded out to L bits. At the start of the computation
(t=0) set

(ac(k,0), v.(k,0), wc(k,0)) = (k,xx, 1)  for 1<k<n,

. 1 if j=1
‘°(””’0)={0 ifj';el.

All other memory triples with t = 0 are set to (0,0,0).
The proof will be completed by showing that changes to the memory triples
and ic bits caused by one step of the PRAM can be computed by a circuit of
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constant depth and size polynomial in P, T, S and n. The inputs to this circuit
are the local and common memory triples and the ic bits before the step and the
outputs are the same information after the step. We restrict our description to a
"projection" of the general circuit on one processor. The general outline of the
circuit for one processor is shown in Fig. 1. We now describe the pieces of Fig.
1 and explain how each can be implemented by a constant-depth polynomial-size
circuit. A subcircuit that is used often is the circuit EQ that takes two L-bit
binary words, say y and z, and produces 1 (true) iff y =z. This circuit has depth
4 and size O(L) since

L
EQ(y, z) = i{\l Wizi V (~y)(~z))).

IcC LOCAL

COMPUTE

OPERANDS LOCAL COMMON

R {

LOCAL| [COMMON
ADD Sus READ I READ [COMPARE| ComPARE
LOCAL // \
COMPUTE ADDRESS SELECT

[ea— T C ——=

OF RESULT RESULT UPDATE
Ic

a v IC

i—— LOCAL
UPDATE
w-BITS OF
LOCAL TRIPLES

TO COMMON LOCAL' Ic'
MEMORY UPDATE

FI1G. 1. The high level outline of the circuit that simulates one step of one processor.

Fix a processor p, 1 < p< P,andastept,0<¢t<T.

(1) Compute operands.

The outputs of this circuit are the values contained in local registers Myp;
and M,p; for the instruction to be executed next. Let opl(p,j) be the L-bit
binary representation of opl in the j b instruction of the program of processor p;
for an instruction with no opl (e.g. HALT) we can take opl(p,j) =0. The first
operand is computed as

s(p)
'Vl kvl ic(p’.lyt) A EQ(Opl(P,J), a[(pakat)) A W[(P,kat) A V[(P,k,t).
Jj= =
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The rightmost A of this expression is computed bitwise over the bits of v,(p,k,?).
This expression can be implemented as a circuit of constant depth and size
O(STL). The second operand is computed similarly.

After the operands are computed, the various operations are applied to the
operands.

(2) Addition and subtraction.

Addition of two L-bit numbers y = y;...yoy1 and z = z;...z3z; can be comput-
ed by a circuit of size O(L?) and constant depth. First compute the carry
generate and propagate bits as g; = y;A\z; and p; = y;Vz;, respectively. The i carry
bit ¢; is 1 iff there is a j <i such that g;=1 and p; =1 for all k with j<k <i.
Therefore, all the carry bits can be computed by a circuit of size O(L?) and
constant depth. Finally, the /M bit of the sum is y; ® z; ® ¢;. For subtraction,
y—1z, the binary representation of 2L+1_7mod 2L*1 can be computed by comple-
menting the bits of z and then adding 1. (Recently, Chandra, Fortune and
Lipton [3] have significantly improved the O(L3?) upper bound for the constant
depth computation of addition.)

(3) Read from memory.

Let ag be the first operand computed in (1) above. The value read from
common memory is

n+PT
kV1 EQ(ag, ac.(k,0)) A we(k,t) A ve(k,t).

The size is O(L(n+PT)). Reading from local memory is similar; the size is
O(LT).
(4) Comparison.

For nonnegative numbers y and z (i.e., yr =z; =0), y <z iff there is an i
such that z;=1 and y;=0 and y;=z; for all j>i. This can be computed by a
circuit of size O(L2) and constant depth. There are three other cases depending
on whether y or z or both are negative. Testing whether y =z is done by EQ.

(5) Update instruction counter.
An example should suffice. If part of the program is

5: GOTO 7 if Myp1 < Mop2
6: not a GOTO,

if 7 is not mentioned in any other GOTO’s, and if ¢ is the output of the
<-comparison circuit, then

ic(p, 7, t+1) = (ic(p,5,1) A ¢) V ic(p,6,1).
The total size is O(S).
(6) Select result.
Based on which ic(p, j, ) is 1, the correct L-bit result »(p, ?) is selected from
the outputs of (1), (2) or (3). For instructions that load a constant or load the

processor number, the proper constant is selected. The constant-depth imple-
mentation should be obvious at this point. The size is O(LS).
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(7) Compute address of result.
For instructions other than memory writes, the L-bit address a(p,?) is given
by the number "res" in the instruction being executed at step 7. For memory

writes, the address is computed as in (1). The size is O(STL).

(8) Local change? and common change?

The local (common) change bit A(p, ) (y(p,?)) is 1 iff processor p changes
the local (common) memory at step £. Let C(p) be the set of instruction num-
bers of common memory WRITE instructions in the program of processor p. Let
POS(a) be a circuit that computes 1 iff the L-bit « is positive. Recall the
convention that an indirect WRITE using a nonpositive address has no effect.
Then

v, )= V ic(p,j, 1)) A POS(a(p, 1)).
jeC(p)

A(p, t) is computed similarly. The size is O(S + L).

(9) Update local memory.
Local memory of processor p is updated by setting

a[(P,t'l'l,H'l) = a(P,t),
vi(p, t+1,141) = »(p, 1),
wy(p, t+1,t+1) = A(p, 1),

ayp,k,t+1) = a,(p, k, 1) for 1 <k<t,
vy, k,t+1) = v)(p,k,t) for 1<k<t

Also, for each 1 < k <1, wy(p, k,t+1) should be set to O if processor p is chang-
ing its local memory at this step (A(p,7) = 1) and the address a,(p,k,r) matches
the address «(p,t) being changed at this step. Each w, can be updated by 2
constant depth circuit of size O(L), or O(TL) in all.

The circuitry of (1)-(9) must be replicated for each processor, so this gives
size O(P(STL + L* + L(n + PT))).

(10) Update common memory.

Next, the common memory triples are updated using a(p,f), »(p,?) and
v(p, ) from all the processors. First, y(p,#) must be set to 0 if there is a proc-
essor ¢, with g < p, attempting to write into the same“Wddress.

Y@ 0 =100 A ~( VY ¥, D A EQla(g, 1, a(p, ) )

The total size for updating the y’s is O(P2L). The updating of common memory
triples is similar to (9) except that a new block of P triples comes into play. For
1<p<P,

a(n+tP+p,t+1) = a(p, 1),
ve(n+tP+p,t+1) = v(p,1),
we(n+tP+p,t+1) = Y (p, D).
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The computation of w.(k,t+1) for k < n+tP is similar to (9). The size is
O(PL(n + PT)).

Since all the circuitry must be replicated T times, the total size of the
simulating circuit is O(PT(STL + L34+ Ln + PT))).

Finally, in order to assign output nodes in the circuit, the contents of the ith
location of common memory, 1 < i < n, is computed as in (3) where now ag is the
L-bit representation of i. Qutput nodes are now assigned to the results of this
final computation depending on the output conventions of the particular problem
being solved by the CRCW PRAM. [

As mentioned in Remark 3 above, Theorem 1 remains true if the PRAM has
instructions for multiplication and division of O(logn)-bit numbers. In fact, any
Boolean function with d-logon inputs and m outputs can be computed by a circuit
of depth 3 and size O(mn?th) by computing each output from its disjunctive
normal form.

Proof of Theorem 2. By DeMorgan’s laws we can assume that the circuit
contains only OR-gates and NOT-gates. Given a circuit with S wires and N
nodes, number the nodes from 1 to N such that the n input nodes are numbered
from 1 to n. Let Cq, Cy, ... denote the common memory registers. Initially the
ith input bit is placed in C; for 1 < i < n. In general, the Boolean value computed
by node number i in the circuit is computed by the CRCW PRAM in register C;,
and the values of all nodes at a fixed depth 4 in the circuit are computed in
parallel. There is a processor associated with every wire. Say that a wire is
directed from node i to node j, and node j is at depth d in the circuit. The
processor associated with this wire waits cd steps, where the constant c is large
enough that the values computed by all nodes at depth < d have already been
computed by the PRAM before step cd. The waiting is done by incrementing
and testing a counter. If node j is an OR-gate, the processor writes 1 in C; if C;
contains 1, or does nothing if C; contains 0. If node j is a NOT-gate, the proc-
essor writes the negation of the contents of C; into C;. Other processors are
assigned to output nodes. After waiting cT steps, these processors in parallel
move the output bits to an initial contiguous block of common memory. 0

Regarding the first sentence of the remark following the statement of
Theorem 2, note that if several processors write into C; at the same step, then j
is an OR-gate and all these processors are writing 1.

3. Alternating Turing machines and CRCW PRAM’s. In this section, some
familiarity with the concepf of alternation is assumed; see, for example, [4]. An
alternating Turing machine (4TM) is like a nondeterministic Turing machine
except that the states are partitioned into existential states, universal states,
accepting states and rejecting states. Accepting and rejecting states are halting
states. We consider ATM’s with a read-only input tape and one read/write
worktape. A configuration of an ATM consists of the state, the positions of the
heads on the input tape and worktape, and the nonblank contents of the work-
tape. We let |- denote the one-step transition relation on configurations. Let
INIT ),(x) denote the initial configuration of machine M on input x. An ATM M
accepts input x iff there is a tree, called an accepting computation tree of M on
input x, such that the root of the tree is INITs(x), all leaves are accepting
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configurations, if the existential configuration a is a node of the tree then « has
one son B and a | B, and if the universal configuration « is a node of the tree
then the sons of a are all those B with a|- B. If L is a set of words, M accepts L
if, for all x, M accepts x iff x € L. With no loss of generality we assume that
transitions from existential configurations to universal configurations, or vice
versa, occur only when the machine is in one of a distinguished class of states
called switching states. If B is an existential switching (resp., universal switching)
configuration then there is exactly one a such that a| B and a is a universal
(resp., existential) configuration; moreover, B is the only configuration such that
al-B. An ATM M is S(n) space bounded if any configuration reachable from
INITps(x) uses at most S(|x|) cells on the worktape. An ATM M is T(n)
alternation bounded if any computation path

INITy(x) - a1 a2 b ... k- ap
has at most T(| x| ) -1 switching configurations. We let
ATM-ALT-SPACE(T(n), S(n))

be the class of languages L € {1,2}* accepted by ATM’s that are simultaneously
T(n) alternation bounded and S(n) space bounded.

A CRCW PRAM M accepts input x € §{1,2}* iff, when started with the ith
digit of x in common register i for 1 <i< |x|, M halts with 1 in common
register 1. Let

CRCW-TIME-PROC(T(n), P(n)) .

be the class of languages L < {1,2}* accepted by CRCW PRAM'’s that are
simultaneously T(n) time bounded and P(n) processor bounded.

The pair (T(n), S(n)) is suitable if

(1) S(n) 2 logn and logT(n) < S(n) < T(n),

(2) there is a deterministic Turing machine whigh, when given an input of
length n, lays off a block of S(n) tape cells and computes the binary representa-
tion of T(n), and

(3) there is a (serial, uniform cost criterion) RAM which, when given an
input of length n, halts within O(T(n)) steps with S(n) and T(n) in two registers.

For example, letting log n abbreviate [log,(n+1) 1, the function log » is computa-
ble by a RAM in time O(logn): starting with /=1, the RAM successively doubles
the variable 7 until the I'" common location contains a zero. Therefore,
(log n,log n) is suitable.

THEOREM 3 (Ruzzo, Tompa [22]). Let (T(n), S(n)) be suitable.

ATM-ALT-SPACE(O(T(n)), O(S(n)))
= CRCW-TIME-PROC(O(T(n)), 20(S(m)y,

Proof. Our goal is just to outline enough of the proof to allow the interested
reader to complete the details. (The following proof, which uses the results of
the previous section as a foundation, is due to the first author. Ruzzo and
Tompa’s original proof does not use unbounded fan-in circuits per se.)

1. (€) Let M be an ATM which is O(T(n)) alternation pounded and
O(S(n)) space bounded. If the constant d is such that d5™ is an upper bound
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on the number of configurations of M on inputs of length n, then M accepts
within time d5™ [4, Thm. 2.6]. Fix an input x. A timed configuration (on input
x) is a pair (a,t) where a is an S(|x|) space bounded configuration of M and ¢
is an integer with 0 € ¢ < a5 The relation |- is extended to timed configura-
tions by

(a,) F B,7) iff a} B and ¢ =1+ 1.

The CRCW PRAM that simulates M first constructs the adjacency matrix 4
of an acyclic directed graph whose nodes are the timed configurations. If ¥ and v
are timed configurations, there is an edge directed from v to u (i.e., A(v,u) =1)
iff u|- v. The matrix 4 is computed and stored in common memory. To compute
A, each processor views its processor number as a pair (u,v) of timed configura-
tions. Since » and v are strings of length O(S(n)), time O(S(n)) is sufficient for
each processor to "decode" its number to a pair (u,v) and check whether u|-v;
the processor then writes 1 in A(v,u) iff u}-v. Note that 20(8(m) processors are
sufficient for this, and recall that S(n) < T(n).

A timed configuration (u,r) is special if u is halting, u is switching, or
(u,t) = (INIT(x),0). The next step is to partially transitively close the graph so
that A(v,u) =1 iff there is a sequence wy,..., w,, of nonspecial timed configura-
tions such that

™) ubwikwlbk . . Fwyb o

To compute this closure, each processor decodes its processor number to a triple
(u,w,v) of timed configurations and checks whether w is special; this takes time
O(S(n)). If w is special, the processor does not participate in computing the
closure. If w is not special, the processor executes a sequence of phases. During
a given phase, the processor writes 1 in location A(v,u) iff both A(v,w) =1 and
A(w,u) = 1; each phase takes constant time. After ¢ phases, all paths (*) of
length < 2! will have been discovered, so logzds(”) = O(S(n)) phases suffice.

Next, it is easy to transform this graph to a circuit as follows. Remove all
nonspecial nodes, view halting configurations as input nodes, view existential
switching (resp., universal switching) configurations as OR-gates (resp., AND-
gates), and view (INITy(x),0) as the single output node. This circuit has size
20(8(n) and depth O(T(n)). If input nodes corresponding to accepting (resp.
rejecting) halting configurations are given value 1 (resp., 0), the value computed
at the output node is 1 iff M accept x. As shown in the proof of Theorem 2, a
CRCW PRAM with 20(5() processors can simulate this circuit within time
O(T(n)).

2. (2). Let M be a CRCW PRAM which is O(T(n)) time bounded and
P(n) = 20() processor bounded. For a given input x, consider the circuit
described in the proof of Theorem 1. By the well known trick of computing, for
each gate, both the value computed by the gate and the negation of that value,
we can assume that the circuit does not contain NOT-gates. Removing NOT-
gates in this way does not increase depth and at most doubles size. This circuit
has depth O(T(n)), and since it has size polynomial in P, T, and n, the nodes of
the circuit can be named by binary strings of length

O(log P(n) + log T(n) + logn) which is O(S(n)).



SIMULATION OF PARALLEL RANDOM ACCESS MACHINES 421

The construction of this circuit is sufficiently uniform that, for a particular
naming of the nodes, there is an O(S(n)) space bounded deterministic Turing
machine which, when given x and the names of nodes u# and v, determines
whether there is an edge (i.e., wire) of the circuit from u to v, and determines the
types of u and v, that is, input node assigned value 0, input node assigned value
1, output node, AND-gate, or OR-gate. This Turing machine is used as a sub-
routine in the following ATM program for simulating the circuit.

v <« the output node of the circuit;
while v is not an input node do
begin
if v is an AND-gate (resp., OR-gate) then universally (resp., exis-
tentially) choose a node u such that there is an edge from u to v in
the circuit; /
V- u;
end
if the input node v is assigned value O (resp., 1) then reject (resp., accept).

This ATM is O(T(n)) alternation bounded and O(S(n)) space bounded, and it
accepts x iff M does. [

Whereas Theorem 1 was useful in proving nonconstant lower bounds on
CRCW PRAM time, Theorem 3 appears to be more useful in proving upper
bounds. An interesting class is the class of languages accepted by CRCW
PRAM’s in time O(logn) with a polynomial number of processors. By Theorem
3, this class is precisely

ATM-ALT-SPACE(O(log n), O(log n)).

It is implicit in a paper of Ruzzo [21, Example 1, Thm. 2] that any context free
language is in ATM-ALT-SPACE(O(logn), O(logn)). The following corollary is’
immediate.

CoroLLARY 2 (Ruzzo). If L is context free then L is accepted in time O(logn)
by a CRCW PRAM with a polynomial number of processors.

It is interesting to compare this corollary with the result of Reif [18] that
any deterministic context free language is accepted by a CREW PRAM (i.e., no
concurrent writing to the same location) in time O(logn) using a polynomial
number of processors.

Acknowledgment. We thank Larry Ruzzo and Martin Tompa for allowing us
to include their result relating alternating Turing machines to CRCW PRAM’s.
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